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Abstract

Tropical geometry is a branch of mathematics between algebraic geometry, polyhedral

geometry and combinatorics. One of the main ideas of the field is to associate to an

algebraic variety X a tropical variety trop(X) called its tropicalization. This object

is a polyhedral complex, and thus can be studied by means of polyhedral geometry and

combinatorics, providing some information about the original varietyX while being easier

to study.

In Chapter 1, we study a connection between tropical geometry and intersection

theory of toric varieties, providing an algorithm to compute toric intersection classes from

tropical varieties. We outline an application to wonderful compactifications, in particular

the effective cone of M0,n.

In Chapter 2, we study some possible tropical analogues of Weierstrass semigroups

of an algebraic curve. We define two candidates, called the rank and functional Weier-

strass sets, we study their interplay and properties.

In Chapter 3, we study a generalization of flag varieties, namely linear degenerate

flag varieties, from a tropical point of view. We define a linear degenerate flag Dressian

and prove a result analogous to the flag Dressian.
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Introduction

Tropical geometry is a relatively new area of mathematics at the intersection of algebraic
geometry, polyhedral geometry and combinatorics. In the last two decades, we have
seen a rapid and significant development of this branch of mathematics [85]. One of
the main ideas of the field is to associate to an algebraic variety X a tropical variety
trop(X) called its tropicalization. This object is a polyhedral complex, and thus can be
studied by means of polyhedral geometry and combinatorics, while being easier to study
it still provides valuable information about the original variety X. This is the reason why
tropical geometry has been used to study problems in algebraic geometry [86, 52, 51, 53]
and combinatorics [62, 63, 1]. In addition, the introduction of this new geometry also
gives rise to many interesting problems that are purely tropical [83, 84, 34, 103, 3].

This thesis is divided into three chapters, and the contents of each chapter are
independent to each other.

In Chapter 1, we study an interesting connection between tropical geometry and
toric intersection theory. The intersection theory of toric varieties was first studied in
Fulton and Sturmfels [48], and it has many applications in different contexts, which
include: wonderful and tropical compactifications [108, 31, 42], birational geometry [56,
57, 21], tropical intersection theory [75, 73, 93, 3, 74, 103] and combinatorial Hodge
theory [62, 63, 1]. In a certain way, intersection classes of a toric variety with fan Σ

can be thought in terms of balanced subfans of Σ, also referred as Minkowski weights.
From the Structure Theorem of Tropical Geometry we know that the tropicalization of
a subvariety of a torus Y ⊆ T n with trivial valuation is a balanced fan. A surprising
connection between tropical and toric geometry is that the tropicalization of Y is the
balanced fan corresponding to the intersection class of the closure of Y inside an “enough
refined" toric variety. This fact provides us an algorithm, that we describe in Section
1.2.4, to compute toric intersection classes starting from the data of the tropicalization.
This algorithm was implemented in a new package TropicalToric.m2 for Macaulay2 [58]
that we describe in Section 1.4. Further, we present some applications to the intersection
theory of wonderful compactifications and the moduli space M0,n.

Chapter 2 is a readapted version of the work [15], which is about possible tropical

vi



analogues of the notion of Weierstrass semigroup of an algebraic curve. Two candidates
are studied, called the rank and functional Weierstrass sets. These are defined within the
framework of the Riemann-Roch theory on graphs developed by Baker and Norine [7].
We refer to Section 2.1 for a more thorough introduction.

Chapter 3 is a readapted version of the work [17], which is about linear degenera-
tions of tropical flag varieties. This work studies linear degenerate flag varieties, which are
a generalization of flags of linear spaces, from a tropical point of view. The notion of lin-
ear degenerate flag Dressian is introduced, and a characterization of its points, analogous
to the flag Dressian, is proved. We refer to Section 3.1 for a more thorough introduction.
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Chapter 1

Tropical methods in toric intersection
theory

1.1 Intersection theory

1.1.1 Chow ring

Let X be a variety of dimension n. The group of k-cycles Zk(X) = Zn−k(X) is the
free abelian group generated by the irreducible subvarieties of X of dimension k. In
other words, a k-cycle V ∈ Zk(X) is a formal linear combination with coefficients in Z of
irreducible k-dimensional subvarieties Vi of X:

V =
∑
i

aiVi ∈ Zk(X).

With the notation above, we say that V is effective if ai ≥ 0 for every i. The cycles
arising from an irreducible subvariety (i.e. the cycles Vi above), are sometimes called
prime (or irreducible) cycles.

An (n − 1)-cycle is thus a Weil divisor on X. If V is an irreducible subvariety of
X of dimension k+1, and f is a rational function of V , then we can regard the principal
divisor div(f) of V as a k-cycle of X. Denote by Ratk(X) = Ratn−k(X) the subgroup
of Zk(X) generated by all the k-cycles of the form div(f) for f a rational function of
some irreducible subvariety of X of dimension k + 1. The k-cycles in Ratk(X) are called
principal and two k-cycles are rationally equivalent if their difference is principal. The
k-dimensional Chow group of X is the group of k-cycles modulo rational equivalence:

Ak(X) = Zk(X)/Ratk(X).
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The codimension k Chow group is defined by Ak(X) = An−k(X).
If in addition X is smooth, then with a substantial amount of work (see [47,

Chapter 8]) it can be shown that there is an intersection product Ak(X) × Al(X) →
Ak+l(X) which coincides with the geometric intersection of cycles in the case of transverse
intersections.

Proposition-Definition 1.1.1 ([47, Proposition 8.3]). The intersection product makes

A∗(X) =
n⊕
k=0

Ak(X)

into a commutative graded ring, called the Chow ring of X.

1.1.2 Effective and nef cones

In this section, X is a smooth projective variety of dimension n. For a cycle V ∈ Z(X) =⊕
k Z

k(X), denote by [V ] its class in the Chow ring A∗(X). Note that sinceX is complete,
there is a degree homomorphism deg : An(X) → Z defined by

∑
aiVi 7→

∑
ai.

Definition 1.1.2 (Numerical equivalence). Two k-cycles V1, V2 ∈ Zk(X) are numeri-
cally equivalent, written V1 ≡ V2, if

deg([V1] · [V ]) = deg([V2] · [V ]) for every V ∈ Zk(X).

A k-cycle is numerically trivial if it is numerically equivalent to zero. The subgroup
of numerically trivial k-cycles is denoted by Numk(X) = Numn−k(X) ⊆ Zk(X).

We denote the corresponding quotient groups by

Nk(X) = Nn−k(X) = Zk(X)/Numk(X).

Definition 1.1.3 (Nef cycles). A k-cycle V ∈ Zk(X) is nef (or numerically effective)
if

deg([V ] · [V ′]) ≥ 0 for all V ′ ∈ Zk(X) effective.

Analogously, a Chow (or numerical) class α in Ak(X) (or Nk(X)) is effective (or
nef) if it is the class of an effective (or nef) cycle.

Note that, by definition, if two k-cycles V1, V2 ∈ Zk(X) are rationally equivalent
V1 ∼ V2, then they are also numerically equivalent V1 ≡ V2. In other words, we have
Ratk(X) ⊆ Numk(X), therefore Nk(X) is a quotient of Ak(X). This implies that the
intersection product in A∗(X), induces an intersection product on N(X) =

⊕
kN

k(X).
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Set Nk(X)R = Nk(X) ⊗Z R. From [80, Proposition 1.1.16], Nk(X)R is a vector space of
finite dimension. Thus, the intersection product gives a non-degenerate bilinear pairing

Nk(X)R ×Nk(X)R → R.

For a k-cycle C ∈ Zk(X), denote by [C]n its class in Nk(X).

Definition 1.1.4 (Effective and nef cones).

• The k-th nef cone Nefk(X) is the cone in Nk(X)R generated by classes of nef
k-cycles:

Nefk(X) = Nefn−k(X) =

{
m∑
i=1

ai[Ci]n : ai ≥ 0, Ci ∈ Zk(X) is nef

}
⊆ Nk(X)R.

• The k-th (pseudo)effective cone Effk(X) is the closure of the cone in Nk(X)R

generated by classes of effective k-cycles:

Effk(X) = Effn−k(X) =

{
m∑
i=1

ai[Ci]n : ai ≥ 0, Ci ∈ Zk(X) is effective

}
⊆ Nk(X)R.

Sometimes the notation Effk(X) is used to distinguish the cone generated by effec-
tive classes from its closure. We will not use this notation, and denote simply by Effk(X)

the closure of the cone generated by the effective classes.
The (n−1)-st nef cone often times is simply called nef cone, and is usually denoted

by Nef(X) = Nef1(X). The first effective cone is called the effective cone of curves, and it
is denoted by NE(X) = Eff1(X). The following result easily follows from the definitions.

Corollary 1.1.5. The cones Nefk(X) and the Effk(X) are dual to each other with respect
to the intersection product.

1.2 Tropical Toric connections

1.2.1 Toric intersection theory

In this section we recall the basics of toric intersection theory. All toric varieties through-
out are assumed to be normal.

We will follow the usual notation adopted in toric geometry. A toric variety XΣ

is defined by a rational polyhedral fan Σ in NR = N ⊗ Rn for a lattice N ≃ Zn, where
n = dimXΣ. The lattice dual to N is denoted by M = Hom(N,Z), and set MR =M⊗R.

3



We denote by Σ(k) the set of k-dimensional cones of Σ. The support of Σ is denoted
by |Σ|. The algebraic torus of XΣ is denoted by T ≃ (K∗)n, where K is the base field
of XΣ. Each cone σ ∈ Σ determines an orbit O(σ) of the action of the torus T on XΣ.
Its closure V (σ) = O(σ) is a union of torus orbits and it is a torus invariant irreducible
subvariety of XΣ of dimension n− dim(σ).

Proposition 1.2.1 ([46, Section 5.1][28, Lemma 12.5.1]). Let XΣ be a toric variety. The
Chow group Ak(XΣ) is generated by the classes

{[V (σ)] : σ ∈ Σ(k)}.

Now we give a combinatorial description of the relations of the set of generators
above. For every cone σ ∈ Σ let Nσ be the sublattice of N generated by σ ∩ N , let
N(σ) = N/Nσ and M(σ) = σ⊥ ∩M the dual lattice of N(σ). Now fix τ ∈ Σ(k − 1), for
every σ ∈ Σ(k) such that τ ⊆ σ, the variety V (σ) is a codimension 1 subvariety of V (τ),
and thus defines a divisor on V (τ). Let nσ,τ be a lattice point in σ whose image generates
the one dimensional lattice Nσ/Nτ . Any u ∈ M(τ) determines a rational function xu on
V (τ) whose divisor is

div(xu) =
∑
σ∈Σ(k)
τ⊆σ

⟨u, nσ,τ ⟩V (σ)

therefore, in Ak(XΣ) we have ∑
σ∈Σ(k)
τ⊆σ

⟨u, nσ,τ ⟩[V (σ)] = 0. (1.1)

Proposition 1.2.2 ([48, Proposition 2.1]). The group of relations on the set of generators
{[V (σ)] : σ ∈ Σ(k)} of the Chow group Ak(XΣ) is generated by relations of the form (1.1)
where τ ranges over Σ(k − 1).

The Chow ring is well defined if XΣ is smooth. However, for toric varieties, if Σ is
just simplicial, we can define the intersection product on rational cycles, making

A∗(XΣ)⊗Z Q =
n⊕
k=0

(
Ak(XΣ)⊗Z Q

)
into a graded ring (see [46, Section 5] or [75, Section 2]). We now give an explicit
description of this intersection product. For every cone σ ∈ Σ(k) generated by the rays
ρ1, . . . , ρk ∈ Σ(1), define the multiplicity mult(σ) of σ as the index of the sublattice
generated by v1, . . . , vk, where vi is the first lattice point of ρi. Explicitly, the index of
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such sublattice of N ≃ Zn is the GCD of the maximal minors of the matrix with columns
the vi’s seen as vectors in Zn.

Proposition 1.2.3 ([46, Section 5][28, Lemma 12.5.2]). Let XΣ be a simplicial toric
variety. If ρ1, . . . , ρk ∈ Σ(1) are distinct, then in A∗(XΣ) we have

[V (ρ1)] · [V (ρ2)] · · · · · [V (ρk)] =

 1
mult(σ)

[V (σ)] if σ = ρ1 + · · ·+ ρk ∈ Σ,

0 otherwise.

In particular, if XΣ is smooth, the class of V (σ), for σ = ρ1 + · · · + ρk ∈ Σ(k) with
ρi ∈ Σ(1), is the intersection of the classes of V (ρ1), . . . , V (ρk).

Now we want to explicitly describe the Chow ring of a complete simplicial toric
variety XΣ. Suppose that Σ has s rays ρ1, . . . , ρs, and let D1, . . . , Ds be the corresponding
torus invariant divisors. From Proposition 1.2.3, we have that the Chow ring is generated,
as a graded ring, by the classes [D1], . . . , [Ds] of such divisors. A first set of relations
between these classes comes from Proposition 1.2.2. More precisely, if V = (vij) is the
n × s matrix with columns the first lattice points vi of the rays ρi of Σ, these relations
are encoded in the ideal:

L(Σ) =

〈
s∑
j=1

vijDj : i ∈ {1, . . . , n}

〉
⊆ Z[D1, . . . , Ds].

The second set of relations comes from Proposition 1.2.3. In fact, if I ⊆ {1, . . . , s} is
such that

∑
i∈I ρi /∈ Σ, then

∏
i∈I [Di] = 0, where here the sum of cones is intended as a

Minkowski sum. These relations are encoded in the following ideal:

SR(Σ) =

〈∏
i∈I

Di : I ⊆ {1, . . . , s},
∑
i∈I

ρi /∈ Σ

〉
⊆ Z[D1, . . . , Ds].

The ideal SR(Σ) is the so-called Stanley-Reisner ideal (see [88, Definition 1.6]) of the
following simplicial complex associated to Σ:

∆ =

{
I ⊆ {1, . . . , s} :

∑
i∈I

ρi ∈ Σ

}
.

Theorem 1.2.4 ([46, Section 5.2][28, Theorem 12.5.3][85, Theorem 6.7.1]). Let XΣ be
a complete smooth toric variety whose fan Σ has s rays, with torus invariant divisors
D1, . . . , Ds. The Chow ring of XΣ is given by

A∗(XΣ) ≃ Z[D1, . . . , Ds]/(L(Σ) + SR(Σ)).

5



This holds with Z replaced by Q when XΣ is simplicial.

Now assume that XΣ is complete and simplicial. Since XΣ is complete, there is
a degree homomorphism deg : An(XΣ) → Z. For every 0 ≤ k ≤ n, this homomorphism
gives rise to another homomorphism

Dk
XΣ

: Ak(XΣ) → Hom(An−k(XΣ),Z)

defined by Dk
XΣ

(α)(β) = deg(α · β) for every α ∈ Ak(XΣ) and β ∈ An−k(XΣ).

Proposition 1.2.5 (Kronecker duality [48, Proposition 2.4]). If XΣ is a complete sim-
plicial toric variety, then Dk

XΣ
is an isomorphism for every 0 ≤ k ≤ n.

The previous result gives us the following alternative description of Chow groups
of a simplicial complete toric variety in terms of balanced fans.

Definition 1.2.6. A weighted fan is a pair (Σ,m) of a fan Σ pure of dimension d, and
a weight function m : Σ(d) → Z. A weighted fan (Σ,m) is balanced at τ ∈ Σ(d− 1) if∑

σ∈Σ(d), τ⊆σ

m(σ)nσ,τ = 0.

The weighted fan (Σ,m) is balanced if it is balanced at every τ ∈ Σ(d− 1).

Balanced fans in [48] are called Minkowski weights. If Σ is a complete fan of
dimension n, then for every 0 ≤ k ≤ n the Minkowski weights of the form (Σ(k),m)

with the operation (Σ(k),m) + (Σ(k),m′) = (Σ(k),m +m′) form an abelian group. By
combining Proposition 1.2.2 with Proposition 1.2.5 we have the following result.

Corollary 1.2.7 ([48, Theorem 3.1]). If XΣ is complete and simplicial, the Chow group
Ak(XΣ) is isomorphic to the group of Minkowski weights of codimension k in Σ.

1.2.2 Tropical compactifications

In this thesis, when we talk about tropicalization, we will always refer to embedded trop-
icalization in the sense of [85, Chapter 3].

Fix a field K with trivial valuation. A subvariety of an algebraic torus T = (K∗)n

is called very affine. Throughout this section, if not specified otherwise, we will consider
the following situation: Y ⊆ T is a very affine variety irreducible of dimension d, XΣ is
a toric variety with torus T , and Y is the closure of Y inside XΣ. In this situation, from
the Structure Theorem of Tropical Geometry [85, Theorem 3.3.5], trop(Y ) is the support
of a balanced fan in Rn. Note that Σ and trop(Y ) have the same ambient space.
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Theorem 1.2.8 ([85, Theorem 6.3.4][108, Lemma 2.2]). For any σ ∈ Σ, Y intersects the
torus orbit O(σ) if and only if trop(Y ) intersects the relative interior of σ.

Corollary 1.2.9 ([85, Proposition 6.4.7][108, Proposition 2.3]). The closure Y is complete
if and only if trop(Y ) ⊆ |Σ|.

Definition 1.2.10. Let Y ⊆ T be a very affine variety. A tropical compactification
of Y is any variety isomorphic to the closure Y in a toric variety XΣ with trop(Y ) = |Σ|.
If in addition the multiplication map ψ : T × Y → XΣ given by (t, x) 7→ tx is flat and
surjective, the tropical compactification is flat tropical.

Proposition 1.2.11 ([85, Proposition 6.4.14][108, Proposition 2.5]). If the closure Y in
XΣ is a flat tropical compactification, then every refinement of Σ has this property. In
addition trop(Y ) = |Σ|.

Proposition 1.2.12 ([85, Proposition 6.4.15]). Suppose that the closure Y in XΣ is a flat
tropical compactification, and that XΣ is smooth. Then Y is Cohen-Macaulay at every
point p ∈ Y ∩O(σ) for every σ ∈ Σ(d).

Theorem 1.2.13 ([108, Theorem 1.2]). Any very affine variety Y ⊆ T has a flat tropical
compactification Y such that the corresponding toric variety XΣ is smooth.

For an explicit construction of a flat tropical compactification of a very affine
variety, see [85, Proposition 6.4.17].

1.2.3 Toric intersection classes from tropical varieties

Throughout this section and the rest of this thesis, by intersection class of a cycle we
mean its class in the Chow ring. We have seen in Section 1.2.1 that intersection classes
of a complete simplicial toric variety XΣ correspond to balanced fans. Let Y ⊆ T be an
irreducible very affine variety of dimension d such that its closure Y in XΣ is a tropical
compactification. We can give trop(Y ) the structure of a balanced fan.

Question 1.2.14. Which intersection class corresponds to the balanced fan trop(Y )?

In this section, we will prove that the answer to the previous question is the inter-
section class [Y ] ∈ Ad(XΣ). This fact has many interesting applications. For instance,
intersection classes of toric varieties can be recovered using tropical geometry.

In this section and throughout, all degree homomorphisms of complete toric vari-
eties will be denoted by deg.

7



Theorem 1.2.15 ([85, Theorem 6.7.7]). Let Y ⊆ T be a subvariety and let Y be a flat
tropical compactification of Y in a smooth toric variety XΣ. Let Σ′ be a smooth completion
of the fan Σ and let i : XΣ → XΣ′ be the induced inclusion. Then, for every maximal
cone σ in Σ we have

m(σ) = deg
(
i∗
(
[Y ]
)
· [V (σ)]

)
,

where m(σ) is the multiplicity of σ in trop(Y ).

Proof. Let d = dim(Y ). Since Y is a flat tropical compactification, from Proposition
1.2.11 we have trop(Y ) = |Σ|. Fix a maximal cone σ ∈ Σ(d). By [85, Proposition 6.4.7
(2)], the scheme Y ∩O(σ) is zero dimensional. Since XΣ is smooth, by Proposition 1.2.12,
Y is Cohen-Macaulay at any point p ∈ Y ∩O(σ). We have

i∗
(
[Y ]
)
· [V (σ)] =

∑
p∈Y ∩O(σ)

i(p, Y · V (σ);XΣ′)[p] ∈ A0(XΣ′),

where i(p, Y ·V (σ);XΣ′) is the intersection multiplicity of p in Y ·V (σ) (see [47, Definition
7.1]). By [47, Proposition 7.1],

∑
p i(p, Y · V (σ);XΣ′) equals the length of Y ∩O(σ). By

[85, Remark 6.4.18], Y ∩ O(σ) equals the quotient of the subscheme T defined by the
initial ideal inw(IY ) by the torus Tσ = Nσ ⊗K∗, where IY is the Laurent ideal of Y ⊆ T .
Since K has the trivial valuation, K equals its residue field. Thus by [85, Lemma 3.4.7]
the length equals m(σ).

Now, we want to generalize the previous result to tropical compactifications that
are not necessarily flat, with toric variety XΣ simplicial.

Remark 1.2.16. Let Y be an irreducible d-dimensional subvariety of T and let Y be
the closure of Y in a toric variety XΣ such that trop(Y ) = |Σ|. Let Zd(XΣ) be the group
of codimension-d cycles of XΣ, and Ratd(XΣ) the subgroup of principal codimension-d
cycles. Now consider the homomorphism of groups φ : Zd(XΣ) → Z defined by φ(V (σ)) =

m(σ), where m(σ) is the multiplicity of σ in trop(Y ). By using the same notation as
Section 1.2.1, since (trop(Y ),m) is a balanced fan, for every τ ∈ Σ(d− 1) we have∑

τ⊆σ
σ∈Σ(d)

nσ,τm(σ) = 0.

Thus, for every u ∈M(τ) it follows

φ

 ∑
τ⊆σ

σ∈Σ(d)

⟨u, nσ,τ ⟩V (σ)

 =
∑
τ⊆σ

σ∈Σ(d)

⟨u, nσ,τ ⟩m(σ) =

〈
u,
∑
τ⊆σ

σ∈Σ(d)

nσ,τm(σ)

〉
= 0.
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From Proposition 1.2.2, this means that Ratd(XΣ) ⊆ kerφ, therefore φ induces a well
defined homomorphism φ′ : Ad(XΣ) → Z with φ′([V (σ)]

)
= m(σ).

Let Σ be a fan. A subfan of Σ is a subset Σ′ ⊆ Σ such that Σ′ is also a fan. In
other words, every cone in Σ′ is also a cone in Σ. The next result appears in various
versions in the literature, see for instance [75, Lemma 2.3] or [73, Section 9]. We provide
here a proof using just Theorem 1.2.15.

Theorem 1.2.17. Let Y ⊆ T be an irreducible subvariety and let Y be the closure of Y
in a simplicial toric variety XΣ such that trop(Y ) = |Σ|. Let Σ′ be a simplicial completion
of the fan Σ and let i : XΣ → XΣ′ be the induced inclusion. Then, for every maximal
cone σ in Σ we have

m(σ) = deg
(
i∗
(
[Y ]
)
· [V (σ)]

)
,

where m(σ) is the multiplicity of σ in trop(Y ).

Proof. Let d = dim(Y ). Take a smooth refinement Σ̃′ of Σ′ that has a subfan Σ̃ with the
following properties:

(1) the closure Y ′ of Y in XΣ̃ is a flat tropical compactification of Y ;

(2) Σ̃ is a refinement of Σ.

This is possible since from Theorem 1.2.13 every very affine variety has a flat tropical
compactification; and from Proposition 1.2.11 if a fan gives rise to a flat tropical com-
pactification, then so does any of its refinements.

The fans we are considering are summarized in the following diagram:

Σ̃ Σ̃′

Σ Σ′

completion

refinement

completion

refinement

Let π : XΣ̃′ → XΣ′ be the induced toric map and denote by i both the inclusion
maps of XΣ ⊆ XΣ′ and XΣ̃ ⊆ XΣ̃′ . Consider the following diagram of homomorphisms

Ad(XΣ̃′) Z

Ad(XΣ′)

ψ

π∗ φ (1.2)

9



defined as follows. Fix σ′ ∈ Σ̃′(d) and σ ∈ Σ′(d) such that π(σ′) ⊆ σ. The map π∗ is the
pushforward homomorphism, thus π∗

(
[V (σ′)]

)
= [V (σ)]. The map ψ is defined by

ψ
(
[V (σ′)]

)
= deg

(
i∗
(
[Y ′]
)
· [V (σ′)]

)
.

The map ψ is well defined since it is the composition of the homomorphism deg and the
multiplication in A∗(XΣ̃′) of the class i∗

(
[Y ′]
)
. The map φ is defined by

φ
(
[V (σ)]

)
=

m(σ) σ ∈ Σ(d),

0 otherwise.

It is well defined since (trop(Y ),m) is a balanced fan (see Remark 1.2.16).

Now the diagram (1.2) commutes, since the maps ψ and φ ◦ π∗ are equal on the
set of generators {[V (σ′)] : σ′ ∈ Σ̃′(d)}. In fact, let σ and σ′ as above, if σ′ ∈ Σ̃(d), so we
also have σ ∈ Σ(d), then from Theorem 1.2.15 it follows ψ

(
[V (σ′)]

)
= m(σ), therefore

ψ
(
[V (σ′)]

)
= m(σ) = φ

(
[V (σ)]

)
= φ

(
π∗
(
[V (σ′)]

))
.

On the other hand, if σ′ /∈ Σ̃(d), this means that the relative interior of any cone τ ∈ Σ̃′

containing σ′ does not intersect trop(Y ). Hence, from Theorem 1.2.8, Y ′ ∩ V (σ′) = ∅, so
ψ
(
[V (σ′)]

)
= 0. Further, we also have σ /∈ Σ(d), thus φ

(
π∗
(
[V (σ′)]

))
= φ

(
[V (σ)]

)
= 0,

so ψ and φ ◦ π∗ are equal.

Finally, for every σ ∈ Σ(d) we have:

deg
(
i∗
(
[Y ]
)
· [V (σ)]

)
= deg

(
π∗
(
i∗
(
[Y ′]
))

· [V (σ)]

)
(1.3)

= deg

(
π∗

(
i∗
(
[Y ′]
)
· π∗([V (σ)]

)))
(1.4)

= deg
(
i∗
(
[Y ′]
)
· π∗([V (σ)]

))
(1.5)

= ψ
(
π∗([V (σ)]

))
= φ

(
π∗
(
π∗([V (σ)]

))
= φ

(
[V (σ)]

)
= m(σ) (1.6)

where: in (1.3) we used that π∗
(
i∗
(
[Y ′]
))

= i∗
(
[Y ]
)

since Y ′ is the strict transform of
Y in XΣ̃; in (1.4) we used the projection formula [47, Proposition 2.3 (c)]; in (1.5) we
used the fact that the restriction of the pushforward π∗|A0(XΣ̃′ ) : A0(XΣ̃′) → A0(XΣ′) is
an isomorphism; in (1.6) we used: the definition of ψ, that ψ = φ ◦ π∗, the properties of
the pushforward and pullback homomorphisms, and the definition of φ.
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1.2.4 Tropical algorithm for toric intersection classes

Theorem 1.2.17 implicitly provides us an algorithm to compute the intersection class of
a subvariety of a toric variety from the data of its tropicalization. In this section, we are
going to describe this algorithm in detail.

Algorithm 1.2.18. The input is a complete simplicial toric variety XΣ and the Laurent
ideal I ∈ K[x±1

1 , . . . , x±1
n ], the output is the class [Y ] ∈ An−d(XΣ), where Y = V (I) with

d = dimY :

1. Compute trop(V (I)).

2. Compute a simplicial fan Σ̃ with support trop(V (I)), and compute the multiplicities
m(σ′) of σ′ ∈ Σ̃(d).

3. Choose a basis {[V (σ′)] : σ′ ∈ B ⊆ Σ̃(d)} of Ad(XΣ̃), let π : XΣ̃ → XΣ be the
induced toric map, and compute the pullbacks π∗([V (σ)]) =

∑
σ′∈B aσ,σ′ [V (σ′)] for

every σ ∈ Σ(d).

4. Compute the numbers m(σ) =
∑

σ′∈B aσ,σ′m(σ′) for every σ ∈ Σ(d).

5. Return the class α ∈ An−d(XΣ) corresponding by Kronecker duality to the function
in Hom(Ad(XΣ),Z) defined by [V (σ)] 7→ m(σ) for every σ ∈ Σ(d).

Remark 1.2.19. The above algorithm requires the toric variety to be complete. We
need this hypothesis only in the last step in order to apply Kronecker duality. However,
if the variety XΣ is smooth (and not necessarily complete), then we could instead use
Poincaré duality [47, Corollary 17.4]. On a practical level, even in this context, the above
algorithm would be exactly the same.

We now outline a proof of correctness of the above algorithm. LetXΣ be a complete
simplicial toric variety of dimension n, and let Z ⊆ XΣ be a d-dimensional irreducible
subvariety that is not contained in the toric boundary. In other words, suppose that
Z ∩ T ̸= ∅. Set Y = Z ∩ T . Then we have Y = Z since T is dense in XΣ. If we
fix coordinates on the torus T ≃ (K∗)n, then we have Y = V (I) for some ideal I in
the Laurent ring K[x±1

1 , . . . , x±1
n ]. We now want to compute the class [Y ] ∈ An−d(XΣ)

starting from the data of the tropicalization trop(Y ) = trop(V (I)) and its multiplicities
(in the sense of [85, Definition 3.4.3]). In order to do so, we first observe that it would
be enough to compute the intersection numbers deg([Y ] · [V (σ)]) for every σ ∈ Σ(d). In
fact, as XΣ is complete and simplicial, by Kronecker duality (Proposition 1.2.5) there is
an isomorphism An−d(XΣ) ≃ Hom(Ad(XΣ),Z) that sends every class α to the function
β 7→ deg(α · β). Further the classes [V (σ)] for σ ∈ Σ(d) generate Ad(XΣ), therefore,
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the function corresponding via Kronecker duality to the class [Y ] is determined by the
intersection numbers deg([Y ] · [V (σ)]).

Now, note that in order to compute these intersection numbers, we cannot directly
apply Theorem 1.2.17, since trop(Y ) is not necessarily the support of a subfan of Σ. In
order to do so, we can proceed as follows. Take a simplicial refinement Σ′ of Σ such
that it contains a subfan Σ̃ that has support trop(Y ) (for instance, we could take the
common refinement of Σ and a completion of a fan with support trop(Y )). Note that Σ′ is
complete and simplicial. Let π : XΣ′ → XΣ be the induced toric map. Let Y ′ be the strict
transform of Y in XΣ′ . In other words, Y ′ is the closure of Y in XΣ′ . By construction,
we have π∗([Y

′
]) = [Y ]. By the same argument used in the proof of Theorem 1.2.17

(specifically line (1.5)) we have

deg
(
[Y ] · [V (σ)]

)
= deg

(
[Y

′
] · π∗([V (σ)])

)
for every σ ∈ Σ(d).

Further, since the classes [V (σ′)] for σ′ ∈ Σ′(d) generate Ad(XΣ′), by expressing every
intersection class as the intersection product of divisors classes and by using [28, Theo-
rem 4.2.12] and [28, Proposition 6.2.7], we can compute an expression of the pullbacks
π∗([V (σ)]) ∈ Ad(XΣ′) in terms of the classes [V (σ′)]. Therefore, the intersection num-
bers deg

(
[Y

′
] · π∗([V (σ)])

)
for σ ∈ Σ(d) can be computed starting from the numbers

deg
(
[Y

′
] · [V (σ′)]

)
for σ′ ∈ Σ′(d). Finally, we now can apply Theorem 1.2.17 on Y

′ and
X ′

Σ, so for every σ′ ∈ Σ′(d), we obtain

m(σ′) = deg
(
[Y

′
] · ([V (σ′)])

)
where m(σ′) is the multiplicity of σ′ in trop(Y ) (with m(σ) = 0 if σ /∈ Σ̃).

Remark 1.2.20. Note that it is not actually necessary to explicitly construct the fan
Σ′, but it is enough to compute Σ̃ and perform all the computations on XΣ̃, as for all the
cones σ′ /∈ Σ̃ we have m(σ′) = 0.

1.3 An application to wonderful compactifications

1.3.1 Nested sets and Bergman fans

Following [42], we introduce the notions of building set and nested set complex on a
lattice. Let L be a finite lattice and denote by 0̂ the least element. For any subset
G of L we denote by maxG the set of maximal elements of G. For any X ∈ L set
G≤X = {G ∈ G : G ≤ X}. We denote intervals by [X, Y ] = {Z ∈ L : X ≤ Z ≤ Y }, thus
G≤X = [0̂, X] ∩ G.
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Definition 1.3.1 (Building set). Let L be a finite lattice. A subset G of L \ {0̂} is a
building set of L if for every X ∈ L \ {0̂} and maxG≤X = {G1, . . . , Gk} there is an
isomorphism of posets

φX :
k∏
i=1

[0̂, Gi]
≃−→ [0̂, X]

with φX(0̂, . . . , Gi, . . . , 0̂) = Gi for i ∈ {1, . . . , k}. We call maxG≤X the set of factors
of X in G.

There are two extreme examples of building sets: the (inclusion) maximal building
set L\ 0̂, and the (inclusion) minimal building set, consisting of all elements X ∈ L\ 0̂ for
which [0̂, X] does not decompose as a direct product of posets, the so-called irreducibles.

Definition 1.3.2 (Nested set complex). Let L be a finite lattice and G be a building
set in L. A subset S of G is nested if, for any subset {G1, . . . , Gt} ⊆ S of pairwise
incomparable elements of cardinality at least two, the join G1 ∨ · · · ∨Gt does not belong
to G. The nested sets of G form an abstract simplicial complex N (L,G), called the
nested set complex of G.

The nested set complex of the maximal building L\ 0̂ is the order complex of L\ 0̂:
the abstract simplicial complex consisting of all the chains of L \ 0̂.

We now define the Bergman fan of a matroid. We assume that the reader is familiar
with the basics of matroid theory, for which our main reference will be [94]. Let M be
a matroid on the ground set [n] = {0, 1, . . . , n}. The flats of M ordered by inclusion
form a finite lattice L(M), called the lattice of flats of M . For a subset S ⊆ [n] we set
eS =

∑
i∈S ei ∈ Rn+1 and denote by R1 the subspace of Rn+1 generated by e[n]. For every

subset S ⊆ L(M), we denote by σS the cone in Rn+1/R1 spanned by the classes of the
vectors {eS : S ∈ S}.

Definition 1.3.3 (Bergman fan). Let M be a matroid on the ground set [n] of rank r,
and let G be a building set of the lattice of flats L(M). The Bergman fan BG(M) of M ,
with respect to the building set G, is the (r − 1)-dimensional fan in Rn+1/R1 consisting
of the cones {σS : S ∈ N (L,G)}.

The rays of the Bergman fan corresponds to the elements of G. The support of
the Bergman fan depends just on the matroid, whereas the fan structure is given by the
building set. Bergman fans are the tropical linear spaces with the trivial valuation, as
in this case the tropicalization of a linear space L is the Bergman fan of the (realizable)
matroid M(L) associated to L. In general, Bergman fans are pure dimensional, and if
we assign to each maximal cone of a Bergman fan BG(M) weight one, then we obtain a
balanced fan. The following result follows from [42, Proposition 2]:
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Proposition 1.3.4. Any Bergman fan is smooth.

1.3.2 Hyperplane arrangements

Let A = {Hi : 0 ≤ i ≤ n} be an arrangement of n + 1 hyperplanes in Pd, and consider
its complement Y = Pd \ ∪A. Let vi ∈ Kd+1 be a normal vector of Hi, so we have
Hi = {x ∈ Pd : vi · x = 0}. We assume that A is essential, i.e. the vectors v0, . . . , vn
spanKd+1, in other words the hyperplanes have no a common intersection point. Consider
the algebraic torus T n = (K∗)n+1/K∗ ⊆ Pn, and define the map

ξ : Y → T n, ξ(y) = (y · v0 : · · · : y · vn).

We have that ξ maps Y to a linear subspace L of T n. In fact, let A ∈ Kd+1,n+1 be the
matrix whose columns are the vectors vi. Let B = (bij) ∈ Kn−d,n+1 be the matrix whose
rows are a basis for the kernel of (the linear map associated to) A. Let IL be the ideal in
K[x±1

0 , . . . , x±1
n ] generated by the linear forms f =

∑n
j=0 bijxj for i ∈ {1, . . . , n− d}.

Proposition 1.3.5 ([85, Proposition 4.1.1]). The map ξ is an isomorphism between the
arrangement complement Y and the linear subspace L = V (IL) ⊆ T n.

The previous proposition gives us a correspondence between d-dimensional linear
subspaces of T n and essential hyperplane arrangements of n+ 1 hyperplanes in Pd.

The intersection lattice of A is the poset

L(A) =

{⋂
i∈A

Hi : A ⊆ [n]

}

ordered by reversed inclusion. It is a lattice, and its elements are linear subspaces of
Pd. The underlying matroid of a hyperplane arrangement A = {Hi : 0 ≤ i ≤ n}
is the simple matroid M of rank d + 1 on the ground set [n] = {0, 1, . . . , n} defined in
the following way: a subset A ⊆ [n] is independent if the corresponding normal vectors
{vi : i ∈ A} are linearly independent. The lattice of flats L(M) of M is isomorphic to
the intersection lattice of A [107, Proposition 3.6].

1.3.3 Wonderful compactifications

Let A be an essential hyperplane arrangement of n+1 hyperplanes in Pd and let L(A) be
its intersection lattice. Fix a building set G of L(A). Let Gop denote the partially ordered
set given by the set G with reverse inclusion. We provide here an alternative definition
of De Concini-Procesi wonderful compactifications [31].
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Definition 1.3.6 ([41, Definition 2.3]). Let X1, . . . , Xt be a linear extension of Gop. The
De Concini-Procesi wonderful compactification YG with respect to the building set G
is the result of successively blowing up Pd at (the strict transforms of) X1, . . . , Xt.

Let M be the underlying matroid of A. Then G can be viewed as a building set of
the lattice of flats L(M) of M , since L(M) ≃ L(A). Let Σ = BG(M) ⊆ Rn+1/R1 ≃ Rn

be the Bergman fan of M with respect to G. Consider the n-dimensional toric variety
XΣ. From Proposition 1.3.5, the hyperplane arrangement complement Y = Pd \ ∪A is
isomorphic to a linear subspace of an n-dimensional algebraic torus T n, which is naturally
embedded in XΣ. In summary we can embed Y inside the toric variety XΣ and consider
its closure Y . Since by construction trop(Y ) = |Σ| (see [85, Chapter 4]), Y is a tropi-
cal compactification of Y . This compactification coincides with the De Concini-Procesi
wonderful compactification Y G (see [85, Section 6.7]).

In [42] Feichtner and Yuzvinsky showed that the cohomology of Y agrees with
that of XΣ. Since both varieties are Homology Isomorphism schemes (in the sense of the
Definition in the Appendix of [76]), their Chow rings coincide as well.

Theorem 1.3.7 ([85, Theorem 6.7.14]). Let Y G be a wonderful compactification of a
hyperplane arrangement A with respect to a building set G, and consider the toric variety
XΣ, where Σ = BG(M) and M is the underlying matroid of A. Then

A∗(Y G) ≃ A∗(XΣ).

1.3.4 Effectivity of divisors of wonderful compactifications

In this section, we discuss an application of Algorithm 1.2.18 to wonderful compactifica-
tions. Let A be an essential hyperplane arrangement of n + 1 hyperplanes in Pd, fix a
building set G of the intersection lattice L(A), and consider the wonderful compactifica-
tion Y G of the complement Y = Pd \∪A with respect to G. From Proposition 1.3.5, there
is an isomorphism ξ from Y to a linear subvariety L of T n. Let K[x±1

1 , . . . , x±1
n ] be the

coordinate ring of T n, and let IY be the ideal in K[x±1
1 , . . . , x±1

n ] of L.

Proposition 1.3.8. If W is an irreducible subvariety of Y G of codimension one such
that W = W ∩ Y ̸= ∅, then there exists f ∈ K[x±1

1 , . . . , x±1
n ] such that the ideal of ξ(W )

is IY + (f).

Proof. Recall that Y is a (very) affine variety. Let Γ(W ) and Γ(Y ) be the coordinate
rings of W and Y respectively. Now by taking the coordinate rings from the diagram
W ↪→ Y

ξ−→ T n we obtain the maps K[x±1
1 , . . . , x±1

n ] → Γ(Y ) → Γ(W ), where the
first map has kernel IY . The kernel of the second map is a principal ideal, as Γ(Y ) is
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isomorphic to a Laurent ring, since Y is linear, and W is of codimension one inside Y .
Now, since the ideal IY is linear, we obtain Γ(W ) ≃ K[x±1

1 , . . . , x±1
n ]/(IY + (f)) for some

f ∈ K[x±1
1 , . . . , x±1

n ].

Now let Σ = BG(M) be the Bergman fan with respect to G of the underlying
matroid M of A. As we saw in the previous section, we can embed Y inside XΣ. The
closure of Y inside XΣ coincides with Y G. Now if W is an irreducible subvariety of YG
of codimension one with W = W ∩ Y ̸= ∅, by the previous proposition, the ideal of W
inside T n is given by IY + (f) for some polynomial f ∈ K[x±1

1 , . . . , x±1
n ]. Now we can use

Algorithm 1.2.18 to compute the Chow class of W (which is the closure of W ) inside XΣ.
Then, from Theorem 1.3.7 this class can be identified with the actual Chow class of W
in Y G. Note that Proposition 1.3.8 also implies that every (irreducible) effective divisor
of Y G not contained in the boundary Y G \ Y is of this form. Thus, this whole procedure
gives us a way to study the effective cone Eff1(Y G) of effective divisors of YG.

Remark 1.3.9. The effective cone of k-cycles of a variety X is usually defined inside
Nk(X)R, whereas above we were talking about Chow classes (so inside Ak(X)). However,
for wonderful compactifications, rational equivalence is the same as numerical equivalence,
so the groups Nk(X) and Ak(X) are isomorphic, and the effective cone can be thought
to be inside Ak(X)R. In fact, from a theorem of Keel (Theorem 2 in the appendix of
[76]), since a wonderful compactification is the result of successive blow-ups of Pd at linear
subspaces, rational equivalence is the same as homological equivalence. Then, by applying
a theorem of Lieberman [81, Theorem 1], together with Theorem 1.3.7 and Poincaré
duality, we have that numerical equivalence coincides with homological equivalence.

The reason why we restrict to effective divisors not contained in the boundary
Y G \ Y is because the boundary is divisorial, that is, every irreducible component has
codimension one. These components are called boundary divisors.

1.4 The Macaulay2 package TropicalToric.m2

The computations that we described in Section 1.2.4 were implemented in the package
TropicalToric.m2 [14] of the computer algebra system Macaulay2 [58]. In particular,
this package implements toric cycles and the intersection product on simplicial toric
varieties described in Section 1.2.1.

Example 1.4.1. Let XΣ be the blow-up of P2 at one of the coordinate points, where the
fan Σ and the first lattice points of its rays are as in Figure 1.1.
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ρ0

ρ1ρ2

ρ3

ρ0 ρ1 ρ2 ρ3[ ]
1 1 0 −1
0 1 1 −1

Figure 1.1

LetH be the strict transform inXΣ of a general line in P2 and E be the exceptional divisor.
The Picard group of XΣ is generated by the classes of these two divisors Pic(XΣ) =

⟨[H], [E]⟩. With the notation above, we have

[V (ρ0)] = [H]− [E] [V (ρ1)] = [E]

[V (ρ2)] = [H]− [E] [V (ρ3)] = [H]

Now we verify with our package that the divisor class [V (ρ1)] has negative self-intersection.

i1 : needsPackage "TropicalToric";

i2 : raysList = {{1,0},{1,1},{0,1},{-1,-1}};

i3 : coneList = {{0,1},{1,2},{2,3},{3,0}};

i4 : X = normalToricVariety (raysList, coneList);

Now define the toric cycle V (ρ1).

i5 : E = X_{1}

o5 = X

{1}

o5 : ToricCycle on X

The type ToricCycle should not be confused with the type ToricDivisor from the
NormalToricVarieties package. The toric cycle V (σ) of the normal toric variety X

associated to the cone σ given by a list of rays L is defined with the command X_L. For
example, X_{1,2} or X_{0} define toric cycles, whereas X_1 defines a toric divisor. We
are allowed only to multiply a toric cycle with a toric divisor. Now, we finally compute
the self intersection of E:

i6 : X_1 * E

o6 = - X

{1, 2}

o6 : ToricCycle on X
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The resulting cycle −V (ρ1 + ρ2) is rationally equivalent to E2. The negative sign tells us
that the self-intersection number of the exceptional divisor is −1. We can compute the
degree of maximal codimension cycles with degCycle:

i7 : degCycle(-X_{1,2})

o7 = -1 ♢

Furthermore, the function classFromTropical performs Algorithm 1.2.18 to com-
pute a toric cycle rationally equivalent to a given irreducible subvariety Y of a simplicial
toric variety XΣ. The input of the function consists of the toric variety XΣ and the
ideal I of Y ∩ T n of the Laurent ring of T n. Since Laurent rings are not implemented
in Macaulay2, the actual input will be instead the saturation of I with respect to the
product of the variables in a polynomial ring:

i2 : X = toricProjectiveSpace 2;

i3 : R = QQ[x,y];

i4 : I = ideal(x+y+1);

i5 : classFromTropical(X,I)

o5 = X

{0}

o5 : ToricCycle on X

i6 : J = ideal(x*y + x + y);

i7 : classFromTropical(X,J)

o7 = 2*X

{0}

o7 : ToricCycle on X

The function classFromTropicalCox allows us to input the ideal of Y in the Cox ring
of XΣ:

i8 : R = ring X;

i9 : I = ideal(R_0+R_1+R_2);

i10 : classFromTropicalCox(X,I)

o10 = X

{0}

o10 : ToricCycle on X

The application of Algorithm 1.2.18 to wonderful compactifications, described in
Section 1.3.4, is implemented in the function classWonderfulCompactification.
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Example 1.4.2. Let A be a line arrangement consisting of 4 lines L0, L1, L2, L3 in P2

given by the equations x0 = 0, x1 = 0, x2 = 0, x0 + x1 = 0 respectively. Let A be
the matrix with columns the normal vectors of the lines Li, and let P1, P2, P3, P4 be the
points of intersection of the lines of A as in the figure below.

A =

1 0 0 1
0 1 0 1
0 0 1 0


L0

L3

L1

L2

P3

P4

P2

P1

The underlying matroid M of A, on the ground set {0, 1, 2, 3}, is realized by the matrix
A by labeling the columns with 0, 1, 2, 3 respectively. The lattice of flats L(M) of M is
represented by the diagram in Figure 1.2.

∅

{0} {1} {2} {3}

{0, 1, 3} {0, 2} {1, 2} {2, 3}

{0, 1, 2, 3}

Figure 1.2

There are 4 rank 1 flats, corresponding to the lines L0, L1, L2, L3, and 4 rank 2 flats,
corresponding to the points P1, P2, P3, P4. Let G = L(M) \ {∅} be the maximal building
set of L(M). Then, the wonderful compactification Y of the complement Y = P2 \ ∪A
with respect to G is the blow-up of P2 at the points P1, P2, P3, P4. In particular Y is
a smooth projective surface, all Weil divisors are Cartier [60, Proposition II.6.11], and
the class group is isomorphic to the Picard group [60, Corollary II.6.16]. From [60,
Proposition V.3.2], the Picard group of Y has a basis given by

Pic(Y ) = ⟨[H], [E1], . . . , [E4]⟩, (1.7)

where [H] is the class of the strict transform H of a general line in P2, and [Ei] is the
class of the exceptional divisor Ei of the blow-up at Pi.

The Bergman fan Σ ⊆ R4/R1 of M with respect to G has 8 rays. We denote them
by {ρi : 0 ≤ i ≤ 7}. Their first lattice points are given by the columns of the following
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matrix
ρ0 ρ1 ρ2 ρ3 ρ4 ρ5 ρ6 ρ7


1 0 0 0 1 1 0 0

0 1 0 0 1 0 1 0

0 0 1 0 0 1 1 1

0 0 0 1 1 0 0 1

where ρ0, ρ1, ρ2, ρ3 correspond to the rank 1 flats in G, which in turn correspond to the
lines L0, L1, L2, L3 respectively, and ρ4, ρ5, ρ6, ρ7 correspond to the rank 2 flats in G, that
correspond to the points P1, P2, P3, P4 respectively. Since G is the maximal building set,
the maximal cones of Σ are just the maximal chains of the lattice of flats L(M).

By using the isomorphism in Theorem 1.3.7, let [Yρi ] denote the class in A∗(Y )

isomorphic to the class of the torus invariant divisor of XΣ associated to the ray ρi.
Expressing these divisors in the Picard basis (1.7) we have:

[Yρ0 ] = [H]− [E1]− [E2] [Yρ4 ] = [E1] (1.8)

[Yρ1 ] = [H]− [E1]− [E3] [Yρ5 ] = [E2]

[Yρ2 ] = [H]− [E2]− [E3]− [E4] [Yρ6 ] = [E3]

[Yρ3 ] = [H]− [E1]− [E4] [Yρ7 ] = [E4]

Let K be some algebraically closed field of characteristic zero, and let K[y±1
0 , y±1

1 , y±1
2 ] be

the Laurent ring of the torus

T 3 = {(1 : y0 : y1 : y2) : y0, y1, y2 ∈ K∗} ⊆ P3.

The embedding Y ↪→ T 3 is given by (x0 : x1 : x2) 7→ (x0 : x1 : x2 : x0 + x1), and the
Laurent ideal of Y inside T 3 is I = (−1− y0 + y2).

Now let C be the conic in P2 passing through P1, P2 and P3 given by the equation
x0x1+x0x2+x1x2. The ideal of C in T 3 is (y0+ y1+ y0y1)+ I. We expect the class of its
strict transform in Y to be [2H − E1 − E2 − E3]. We now verify this with our package,
using the function classWonderfulCompactification:

i2 : R = QQ[y_0,y_1,y_2];

i3 : I = ideal(-1-y_0+y_2);

i4 : f = y_0+y_1+y_0*y_1;

i5 : raysList = {{-1,-1,-1},{1,0,0},{0,1,0},

{0,0,1},{0,-1,0},{-1,0,-1},

{1,1,0},{0,1,1}};
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i6 : conesList = {{4,0},{4,1},{4,3},{5,0},{5,2},

{6,1},{6,2},{7,2},{7,3}};

i7 : X = normalToricVariety (raysList, conesList);

i8 : D = classWonderfulCompactification(X,I,f)

o8 = X + X + X

{0} {4} {1}

o8 : ToricCycle on X

To check that this is the result we expect, compare with (1.8). Note that we have
(tropically) dehomogenized the rays of XΣ with respect to the first coordinate in order
to be consistent with our choice of coordinates of T 3. ♢

1.5 An application to the moduli space M 0,n

1.5.1 Fulton conjecture

Let Mg be the (3g − 3)-dimensional variety that parametrizes smooth curves of genus g.
Of course Mg is not compact, since smooth curves degenerate to singular ones. However,
there exists a canonical compactification, the so-called Deligne-Mumford compactification
M g that parametrizes stable curves: curves with at most ordinary nodes as singularities
and finite automorphism groups.

In order to better describe the boundary ∂M g =M g \Mg, it is useful to introduce
moduli spaces of pointed curves M g,n parametrizing (C; p1, . . . , pn), where p1, . . . , pn are
distinct smooth points on the nodal curve C and there are only finitely many automor-
phisms of C fixing p1, . . . , pn. From this definition it follows that M g =M g,0.

The boundary of M g,n is a codimension one subvariety ∆ with components

∆ =
⋃

0≤g′<g
0≤n′<n

∆g′,n′ ,

where ∆g′,n′ is the image of a natural gluing map from M g−1,n+2 for g′ = 0, and from
M g′+1,n′ ×M g−g′+1,n−n′ for g′ > 0.

Definition 1.5.1. We say that a scheme X is stratified by a finite collection of irre-
ducible, locally closed subschemes Ui if X is a disjoint union of the Ui and, in addition,
the closure of any Ui is a union of Uj. The sets Ui are called the (closed) strata of the
stratification.

The variety M g,n has a stratification, where the codimension k strata are the
irreducible components of the locus parametrizing pointed curves with at least k singular
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points. A nef k-cycle must intersect any codimension k strata nonnegatively. It is thus
natural to consider the following conjecture:

Conjecture 1.5.2 (Fk(g, n)). The following equivalent statements hold true.

1. A codimension-k cycle on M g,n is nef if and only if it nonnegatively intersects any
dimension k strata.

2. The cone Effk(M g,n) is generated by the k-dimensional strata.

Conjecture 1.5.2 will be denoted by Fk(g, n) = F n+3g−3−k(g, n) (note that dimM g,n =

n+3g−3), and it is sometimes referred as Fulton conjecture (or Fulton question). One of
the intuitions behind this conjecture was that M0,n is "similar to a toric variety" and for
toric varieties the effective cone of divisors is indeed generated by the (classes of) torus
invariant divisors, which are the analogue of the codimension one strata.

In general, Fk(g, n) is false. For some examples for g ≥ 1, see for instance [89].
However, for several cases the conjecture is still open. The following theorem makes the
case g = 0 particularly interesting.

Theorem 1.5.3 (Bridge theorem [55]).

F1(g, n) ∀g, n ≥ 0 ⇐⇒ F1(0, n) ∀n ≥ 3.

Now we list a series of facts about Fk(0, n):

• F1(0, n) is true for n ≤ 7 [77].

• F1(0, n) for n > 7 is still open.

• F 1(0, n) is true for n ≤ 5.

• F 1(0, n) is false for n ≥ 6 [110]. However, Eff1(M0,6) is generated by the codi-
mension 1 strata and the 15 counterexamples found in [110] (called Keel-Vermeire
divisors), see [61].

• Fk(0, n) is false for 1 < k < n−3 for n≫ 0 (this follows from the previous statement
by lifting the Keel-Vermeire divisors, see [101]).

We now focus on F 1(0, n). As we saw above, Fulton conjecture in this case is
false for n ≥ 6. However, for n = 6 the effective cone Eff1(M0,n) is still polyhedral.
Therefore it is natural to ask for which n the effective cone Eff1(M0,n) of divisors of M0,n

is polyhedral. It was proved in [21] that for n ≥ 10 the effective cone is not polyhedral.
To the author’s knowledge, the cases 7 ≤ n ≤ 9 are still open.
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Finally, we note that in [22] the effective cone Eff1(M0,n) was conjectured to be
generated by the boundary divisors (the codimension one strata), and a class of divisors
called hypertree divisors. Some counterexamples to this conjecture, even in the cases
7 ≤ n ≤ 9, were independently found in [91] and [33].

1.5.2 Computations on effective divisors of M 0,7

In this section, we discuss some computations that were performed to find effective di-
visors of M0,7 with the package TropicalToric.m2, with a view towards the problem of
determining the effective cone of M0,n, in particular for the case n = 7. The computations
were run on the machine Galois (galois.warwick.ac.uk) in a brute-force search form.

The Deligne-Mumford compactification of M0,n can be viewed as a wonderful com-
pactification. The construction of M0,n as successive blow-ups is called Kapranov con-
struction [72]. The underlying matroid associated to M0,n (in the sense discussed in
Section 1.3.3) is the graphic matroid of the complete graph Kn−1.

Consider the complete graph K6, and let A be the following realization matrix for
its matroid

A =



1 0 0 0 0 1 0 0 0 1 0 0 1 0 1

0 1 0 0 0 0 1 0 0 0 1 0 0 1 −1

0 0 1 0 0 0 0 1 0 0 0 1 −1 −1 0

0 0 0 1 0 0 0 0 1 −1 −1 −1 0 0 0

0 0 0 0 1 −1 −1 −1 −1 0 0 0 0 0 0

−1 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0


Each row of A is associated to a vertex of K6, that we number from 1 to 6, and each
column to be associated with one edge, for instance the first column is associated to the
edge {1, 6} of K6.

Let S = C[z0, . . . , z14] be the coordinate ring of P14. Each variable zi is associated
to the edge of K6 corresponding to the i-th column of the matrix A above. For instance
z0 is associated to the edge {1, 6} of K6. Now let R = C[x±1

0 , . . . , x±1
13 ] be the Laurent

ring of the torus T 14 inside P14, where here we are setting xi = zi/z14.

Let I be the ideal of R generated by linear polynomials whose coefficients are given
by the rows of the kernel of (the linear map associated to) the matrix A:

I =⟨−x0 + x4 + x5, −x1 + x4 + x6, −x2 + x4 + x7, −x3 + x4 + x8, −x0 + x3 + x9,

− x1 + x3 + x10, −x2 + x3 + x11, −x0 + x2 + x12, −x1 + x2 + x13, −x0 + x1 + 1⟩ ⊆ R
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The ideal I is the ideal of M0,7 ⊆ T 14. Let M(K6) be the graphic matroid of K6. By
construction, M(K6) is realized by the matrix A, and it is the underlying matroid of
M0,7. Let XΣ be the toric variety with fan Σ given by the Bergman fan of M(K6) with
the fan structure given by the minimal building set.

From Proposition 1.3.8, each prime divisor D of M0,7 corresponds to a polynomial
f ∈ R and its class [D] ∈ A1(M0,7) can be computed from the tropicalization of the very
affine variety with ideal I + (f) ⊆ R.

Remark 1.5.4. Each polynomial f ∈ R has a representative modulo I expressed just in
terms of the first 5 variables. Further, we can choose this representative homogeneous,
since 1 ≡ x0 − x1 modulo I.

Remark 1.5.5. Fix f ∈ R homogeneous of degree d and set J = I + (f). The tropi-
calization trop(V (J)) depends just on the matroid of the vector space Jd, since J has a
tropical basis of degree at most d (see [2, Theorem 3.7]). From this fact, it follows that
as f varies among homogeneous polynomials of degree d of R, there are finitely many
possibilities for trop(J) (and therefore for the class [D] of the associated prime divisor D).
Further, we can choose the coefficients of f to be rationals, and thus integers, as, once the
matroid is fixed, the possibilities for f range in a hyperplane arrangement complement
with rational coefficients.

Brute-force search We performed a brute-force search of effective divisors of M0,7 by
computing the classes of prime divisors D associated to homogeneous polynomials f ∈ R

of degree d. From Remark 1.5.5 we could assume that f had integer coefficients.

Sn-action and orbits We recall that M0,n has a natural action of Sn that simply
permutes the nmarked points. This action can be naturally extended toM0,n. The action
on the boundary divisors δI , indexed by subsets I ⊆ {1, . . . , n} such that |I|, |Ic| ≥ 2,
acts by permuting the elements of I, so that if σ ∈ Sn, then σ · δI = δσ(I).

d = 2 For d = 2, we computed the classes associated to more than 60, 000 polynomials.
We then checked, interfacing with Polymake [54], which of the classes obtained lie outside
the cone generated by the boundary divisors. Then, we computed the orbits (with respect
to the Sn-action described above) of these classes. We found 135 classes, divided in two
orbits, 75 of them inside an orbit of cardinality 105, and the remaining 60 contained in
another orbit of cardinality 420. These two orbits were recognized to be: the first, the
orbit of the pullbacks of the Keel-Vermeire divisors (i.e. pullbacks of hypertree divisors
for n = 6) and the second the orbit of the hypertree divisors (for n = 7).
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Orbits found outside the boundary cone for d = 2

pullbacks of Keel-Vermeire divisors 105 = 7 * 15
hypertree divisors (for n=7) 420 = 7 * 60

d = 3 We then run some computations for d = 3. The classes of more than 10, 000

polynomials were computed. A total of 20 classes outside the boundary cone were found,
and they belong to the same orbit of cardinality 420. This orbit was recognized to be the
orbit of the example found by Opie in [91].

Orbits found outside the boundary cone for d = 3

Opie’s example 420 = 7 * 60

It is very likely that by running the same computations for d = 4, one could find
the (orbit of the) degree 4 example found in [33].

In addition, we note that new examples of extremal rays of the effective cone of
M0,7 were found in [104] on the order of 100,000. This contrasts significantly with M0,6,
in which the extremal rays of the effective cone are just 40.
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Chapter 2

Weierstrass sets on finite graphs

2.1 Introduction

Let X be a smooth projective algebraic curve of genus g and fix a point P ∈ X. Denote
by H(P ) the set of pole orders at P of rational functions regular on X \ {P}. By the
Weierstrass gap theorem (see [40, III.5.3]), the set of gaps G(P ) = N \ H(P ) has car-
dinality exactly g. This implies that H(P ) is a numerical semigroup, that is, a cofinite
additive submonoid of N. The numerical semigroups arising in this way are called Weier-
strass semigroups. We have G(P ) = {1, . . . , g} except in a finite number of points, called
Weierstrass points of X (see [40, III.5.9]).

In 1893 Hurwitz [64] asks if all the numerical semigroups arise in this manner.
Several years later, in 1980, Buchweitz [20] showed that the numerical semigroup

S = ⟨13, 14, 15, 16, 17, 18, 20, 22, 23⟩

is not Weierstrass (see also [36, page 499]). The proof essentially gives the following
necessary condition for a semigroup to be Weierstrass: the m-sumset of the set of gaps
must satisfy |mG(P )| ≤ (2m − 1)(g − 1) for any integer m ≥ 2. Several numerical
semigroups not satisfying the previous condition are constructed in [78]. Furthermore, in
[37] it was proved that for a fixed numerical semigroup S, the set of integers m that do not
satisfy the above condition is finite. Despite these results, little is known more generally
about the family of Weierstrass semigroups. For instance, the problem of determining its
density in the set of all numerical semigroups is still open [71].

After the advent of tropical geometry, the tropical analogues of many classical
results in algebraic geometry were found. Baker and Norine [7] proved a Riemann-Roch
theorem for graphs, which was successively extended by Gathmann and Kerber [50] and
Mikhalkin and Zharkov [87] to metric graphs, namely (abstract) tropical curves. The
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analogue notion of Weierstrass points on graphs was studied for instance in [6, Section 4]
and [99].

Inspired by a work of Kang, Matthews and Peachey [70], in this paper we investi-
gate possible tropical analogues of Weierstrass semigroups. We will focus our attention
on graphs rather than metric graphs, the latter are left for future work. It was already
noted in [70] that two possible non-equivalent definitions can be given, as we now explain.
Throughout this paper, a graph will mean a finite connected multigraph having no loop
edges. Let G be a graph and fix a vertex P ∈ V (G) of G. The functional Weierstrass set
of G at P is defined by

Hf (P ) = {n ∈ N : ∃f ∈ M(G) that has a unique pole of order n at P},

where M(G) is the set of all integer-valued functions on the vertices of G. The rank
Weierstrass set of G at P is defined by

Hr(P ) = {n ∈ N : r(nP ) > r((n− 1)P )},

where r(D) denotes the rank of the divisor D of the graph G, in the sense of Baker and
Norine [7] (see Section 2.2). Classically, for curves, we have Hf (P ) = Hr(P ) = H(P ).
However this is not the case for graphs, for instance the cardinality of the set difference
Hf (P ) \Hr(P ) can be arbitrarily large [70, Proposition 3.9].

Our first main result was conjectured in [70], and relates the two sets when G is a
graph with no multiple edges and more than one vertex, that in this paper will be called
simple.

Theorem A (Theorem 2.3.4). Let G be a simple graph. For every P ∈ V (G) we have
Hr(P ) ⊆ Hf (P ).

As an application of the previous theorem, we calculate the rank and functional
Weierstrass set of the graphs Kn+1 and Kn,m.

Secondly, we completely characterize the subsets of N arising as functional Weier-
strass sets of graphs and of simple graphs, answering a question in [70].

Theorem B (Theorem 2.4.5). The functional Weierstrass sets of graphs (resp. simple
graphs) are precisely the additive submonoids of N (resp. numerical semigroups).

Further, we give a sufficient condition for a subset of N to be the rank Weierstrass
set of a graph.
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Theorem C (Theorem 2.5.3). Let e1 ≥ e2 ≥ · · · ≥ en ≥ 0 be integers and set si =
∑i

j=1 ej.
There exists a simple graph G with a vertex P ∈ V (G) such that

Hr(P ) = {0, s1, s2, . . . , sn−1} ∪ (sn + N).

The previous theorem allows us to construct families of graphs in which the rank
Weierstrass set is not a semigroup (see Example 2.5.6), justifying the name “Weierstrass
set".

2.2 Preliminaries

In this section, we fix our notation and review the basics and some results of Riemann-
Roch theory on finite graphs.

In this paper, a graph will mean a finite connected multigraph having no loop edges;
a simple graph will mean a graph with no multiple edges and more than one vertex. Let
G be a graph and let V (G) (resp. E(G)) denote the set of vertices (resp. edges) of G.
The set Div(G) of divisors of G is the free abelian group on V (G). We think of a divisor
as a formal integer linear combination of the vertices D =

∑
P∈V (G) aPP ∈ Div(G) with

aP ∈ Z. For convenience, we will write D(P ) for the coefficient aP of P in D. The degree
of a divisor D is defined by deg(D) =

∑
P∈V (G)D(P ) ∈ Z. If D,D′ ∈ Div(G) are two

divisors, then D ≥ D′ if and only if D(P ) ≥ D′(P ) for all P ∈ V (G). A divisor D is
effective if D ≥ 0. The set of effective divisors of degree d is denoted by Divd+(G).

Let M(G) = Hom(V (G),Z) be the set of integer-valued functions on the vertices
of G. For every vertex P ∈ V (G), define the indicator function fP ∈ M(G) by

fP (Q) =

−1 Q = P,

0 Q ̸= P.

Let f ∈ M(G), and denote by N (P ) the neighbourhood of P ∈ V (G), that is, the subset
of vertices of G adjacent to P . Define the Laplacian operator ∆ : M(G) → Div(G) by

∆f =
∑

P∈V (G)

 ∑
Q∈N (P )

(
f(P )− f(Q)

)P.

The divisors of the form ∆f are principal. For convenience we will write ∆Pf for the
coefficient ∆f(P ). If we think of f as a vector, the Laplacian operator can be seen as the
multiplication of the Laplacian matrix Q = D − A, where D is the diagonal matrix of
the degrees of the vertices, and A is the adjacency matrix of G. The matrix Q has rank
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|V (G)| − 1, and kerQ = (1, . . . , 1)t. From this fact, it is easy to see that every principal
divisor has degree 0.

Two divisors D,D′ ∈ Div(G) are linearly equivalent, written D ∼ D′, if D −D′ =

∆f , for some f ∈ M(G). The linear system associated to a divisor D ∈ Div(G) is

|D| = {E ∈ Div(G) : E ∼ D,E ≥ 0}.

The rank r(D) of a divisor D is defined as −1 if |D| = ∅, otherwise

r(D) = max{k ∈ N : |D − E| ≠ ∅, ∀E ∈ Divk+(G)}.

Lemma 2.2.1. [7, Lemma 2.1] For all D1, D2 ∈ Div(G) with r(D1), r(D2) ≥ 0 we have
r(D1 +D2) ≥ r(D1) + r(D2).

Lemma 2.2.2. [6, Lemma 2.7] Let G be a graph, and let D ∈ Div(G). Then r(D−P ) ≥
r(D) − 1 for all P ∈ V (G), and if r(D) ≥ 0, then r(D − P ) = r(D) − 1 for some
P ∈ V (G).

The canonical divisor of G is

KG =
∑

P∈V (G)

(deg(P )− 2)P.

It has degree deg(KG) = 2g−2, where g = |E(G)|−|V (G)|+1 is the genus (or cyclomatic
number) of the graph G. We are now ready to state the Riemann-Roch theorem for
graphs, proved by Baker and Norine [7].

Theorem 2.2.3 (Riemann-Roch for graphs). Let D be a divisor on a graph G of genus
g. Then

r(D)− r(KG −D) = deg(D) + 1− g.

For A ⊆ V (G) and Q ∈ A, let outdegA(Q) denote the number of edges incident
with Q and a vertex in V (G)\A. Fix P ∈ V (G). A divisor D is P -reduced if it is effective
in V (G) \ {P}, and every non-empty subset A ⊆ V (G) \ {P} contains a vertex Q ∈ A

such that outdegA(Q) > D(Q).

Proposition 2.2.4. [7, Proposition 3.1] Let P be a vertex of a graph G. For every divisor
D in G, there exists a unique P -reduced divisor D′ such that D ∼ D′.

Following [6, Section 4], a vertex P ∈ V (G) of a graphG of genus g, is a Weierstrass
point if r(gP ) ≥ 1. We now state an analogue of the Weierstrass gap theorem for graphs.

Lemma 2.2.5. [6, Lemma 4.2] Let G be a graph of genus g, and fix a vertex P ∈ V (G).

29



1. P is a Weierstrass point if and only if N \Hr(P ) ̸= {1, . . . , g}.

2. |N \Hr(P )| = g.

3. N \Hr(P ) ⊆ {1, 2, . . . , 2g − 1}.

Note that, in the classical case for curves, the inclusion N\H(P ) ⊆ {1, . . . , 2g−1}
follows from |N \ H(P )| = g and the fact that H(P ) is a semigroup (see [100, Lemma
2.14]).

We now describe a binary operation on graphs that we will use frequently in Section
2.4 and 2.5. Let G1 and G2 be two graphs and v1 and v2 be vertices of respectively G1

and G2. The vertex gluing (or vertex identification) of v1 and v2 is the graph G obtained
from G1 and G2 by identifying v1 and v2 as a new vertex v.

G1 G2 G

v1 v2 v

2.3 The inclusion Hr(P ) ⊆ Hf(P )

In this section, we will assume that G is a simple graph. We will prove the inclusion
Hr(P ) ⊆ Hf (P ) for every vertex P ∈ V (G). First, we will need a series of lemmas,
inspired by the Cori-Le Borgne algorithm [27, Proposition 2] for the rank of divisors of a
complete graph.

Lemma 2.3.1. Fix a vertex P ∈ V (G) and let D be a P -reduced divisor on G. There
exists a neighbour Q ∈ V (G) \ {P} of P such that D(Q) = 0.

Proof. Set A = V (G) \ {P} and let N (P ) ⊆ A be the set of neighbours of P . Assume by
contradiction that D(Q) ≥ 1 for all Q ∈ N (P ). Since G is simple, we have outdegA(Q) =
1 for all Q ∈ N (P ). This implies D(Q) ≥ outdegA(Q) for all Q ∈ A, contradicting the
fact that D is P -reduced.

LetD be a divisor on G of rank r. Using the same terminology as in [27, 30], a proof
for the rank of D is an effective divisor E of degree r + 1 with |D − E| = ∅. We denote
by Proof(D) the set of proofs of D. Note that if D ∼ D′, then Proof(D) = Proof(D′).

Lemma 2.3.2. Fix a vertex P ∈ V (G) and let D be a P -reduced divisor on G of rank
zero. We have Proof(D) \ {P} ≠ ∅.
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Proof. If D(P ) > 0, then P /∈ Proof(D) ̸= ∅. Now assume D(P ) = 0, from Lemma
2.3.1 there exists a neighbour Q of P such that D(Q) = 0. The divisor D′ = D − Q is
Q-reduced. In fact, let A ⊆ V (G) \ {Q}: if P /∈ A then, since D is P -reduced, we have
outdegA(v) > D(v) = D′(v) for some v ∈ A; otherwise if P ∈ A, then outdegA(P ) ≥ 1 >

0 = D(P ) = D′(P ). Finally, since D′(Q) < 0 and D′ is Q-reduced, it follows that Q is a
proof for D with Q ̸= P .

Lemma 2.3.3. Let D be a divisor on G. For every vertex P ∈ V (G) there exists E ∈
Proof(D) such that E(P ) = 0.

Proof. Without loss of generality, we can assume that D is P -reduced. We proceed by
induction on the rank r of D. The case r = −1 is trivial. If r = 0 the assertion follows
from Lemma 2.3.2.

Now suppose that D has rank r ≥ 1 and assume the statement for divisors of rank
r − 1. From Lemma 2.2.2 we have r(D − P ′) = r − 1 for some vertex P ′ ∈ V (G). By
the inductive hypothesis there exists E ′ ∈ Proof(D − P ′) such that E ′(P ) = 0. Now
apply Lemma 2.3.2 to the P -reduced divisor equivalent to D − E ′. Thus there exists
Q ∈ Proof(D − E ′) with Q ̸= P . We conclude by noting that E = E ′ + Q ∈ Proof(D)

and E(P ) = 0.

Now we prove the main result of the section. We will follow the proof outlined in
[70, Theorem 2.4] in which the previous Lemma 2.3.3 was the key step missing.

Theorem 2.3.4. Let G be a simple graph. For every P ∈ V (G) we have Hr(P ) ⊆ Hf (P ).

Proof. Let n ∈ Hr(P ). By Lemma 2.3.3, there exists an effective divisor E ∈ Proof((n−
1)P ) such that E(P ) = 0. By the choice of E and since r(nP ) > r((n−1)P ), there exists
a function f ∈ M(G) such that

(n− 1)P − E +∆f ≱ 0,

nP − E +∆f ≥ 0.

This, together with the fact that E(P ) = 0, implies that f has a unique pole of order n
at P , that is n ∈ Hf (P ).

Remark 2.3.5. In general, Theorem 2.3.4 fails when G has just one vertex P (in which
case we have Hf (P ) = {0} and Hr(P ) = N) and when G has multiple edges. An example
of the last statement is given by the multigraph Bn with two vertices connected by n edges.
For every vertex P ∈ V (Bn), it results Hf (P ) = nN and Hr(P ) = N \ {1, . . . , n − 1},
hence Hr(P ) ⊈ Hf (P ).

31



Following the strategy outlined in [70], as an application of Theorem 2.3.4 we
calculate the rank Weierstrass set of complete and complete bipartite graphs from their
functional Weierstrass set. In fact, in these two cases we have Hr(P ) = Hf (P ) for every
vertex P of the graph.

Lemma 2.3.6. [70, Porism 2.11] Let G be a simple graph, let P ∈ V (G) be a vertex and
let G− P be the graph G with the vertex P and its adjacent edges removed. If G− P is
connected and f ∈ M(G) is a function with a unique pole at P , then f(P ) < f(Q) for
every Q ∈ V (G).

Let n ≥ 1 and consider the complete graph Kn+1.

Lemma 2.3.7. [70, Proposition 3.7] For every vertex P ∈ V (Kn+1), we have Hf (P ) =

⟨n, n+ 1⟩.

Now we deal with the analogous result for the rank.

Corollary 2.3.8. For every vertex P ∈ V (Kn+1), we have Hr(P ) = ⟨n, n+ 1⟩.

Proof. By Lemma 2.3.7 and Theorem 2.3.4 we have Hr(P ) ⊆ Hf (P ) = ⟨n, n+1⟩. Finally,
from Lemma 2.2.5 we have |N \Hr(P )| = g(Kn+1) = |N \ ⟨n, n+ 1⟩|.

Now let n,m ≥ 1 and consider the complete bipartite graph Kn.m. The proof of
the following lemma is inspired by the proof of [70, Proposition 3.7].

Lemma 2.3.9. Let P ∈ V (Km,n) be a vertex of degree n, we have

Hf (P ) = nN ∪ (n(m− 1) + N)

Proof. If n or m is equal to 1, then Hf (P ) = N, so we assume that n,m ≥ 2. We label
the vertices of Kn,m of degree n by P = P1, P2, . . . , Pm and the vertices of degree m
by Q = Q1, . . . , Qn. Let f ∈ M(Kn,m) with a unique pole at P . By Lemma 2.3.6 the
minimum of f is attained at P . Without loss of generality we can assume f(P ) = 0. Set
f(Qi) = a + αi for i ∈ {1, . . . , n} with a, αi ∈ N and α1 = 0, and f(Pi) = b + βi for
i ∈ {2, . . . ,m} with b, βi ∈ N and β2 = 0. Now we have

−∆Pf = na+
n∑
i=2

αi ≥ 0,

∆Qf = a+ (m− 1)(a− b)−
m∑
i=3

βi ≥ 0,

∆P2f = n(b− a)−
n∑
i=2

αi ≥ 0.
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Now if a ≥ b, then from the third inequality 0 ≥ n(b− a) ≥
∑
αi ≥ 0. Hence αi = 0 for

all i ∈ {2, . . . ,m} and −∆Pf = na ∈ nN. On the other hand, if a < b, then from the
second inequality

a+ (m− 1)(a− b) ≥
∑

βi ≥ 0 ⇒ a ≥ (m− 1)(b− a) ≥ m− 1.

This implies −∆Pf = na+
∑
αi ≥ n(m− 1), that is −∆Pf ∈ n(m− 1)+N. This proves

the inclusion Hf (P ) ⊆ nN ∪ (n(m− 1) + N).
For the reverse inclusion, it is enough to note that, for the indicator function fP ,

we have ∆fP = −nP +
∑
Qi. In addition, for every t ∈ {1, . . . , n− 1}

∆

(
mfP +

t∑
i=1

fQi

)
= −

(
n(m− 1) + t

)
P +

m∑
i=2

tPi +
n∑

i=t+1

mQi.

Proceeding similarly as in the proof of Corollary 2.3.8, we are able to calculate the
rank Weierstrass set of complete bipartite graphs.

Corollary 2.3.10. Let P ∈ V (Km,n) be a vertex of degree n, we have

Hr(P ) = nN ∪ ((m− 1)n+ N)

Remark 2.3.11. The computation of the rank Weierstrass set of complete graphs (Corol-
lary 2.3.8) was already implicit in the proof of [26, Theorem 8], a result that gives an
upper bound for the gonality sequence of complete graphs. In fact, we note that the rank
Weierstrass set of a complete graph coincides with its gonality sequence.

Question 2.3.12. Under which conditions on the graph G and the vertex P do we have
Hf (P ) = Hr(P )?

2.4 Functional Weierstrass sets

In this section, we characterize the subsets of N that arise as the functional Weierstrass
sets of some graph or simple graph.

Lemma 2.4.1. Let G be a graph and fix a vertex P ∈ V (G). The functional Weierstrass
set Hf (P ) is an additive submonoid of N. Further, if G is simple, then Hf (P ) is a
numerical semigroup.
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Proof. We always have 0 ∈ Hf (P ). Further, for every f, g ∈ M(G), we have ∆(f + g) =

∆f+∆g, so Hf (P ) is closed under addition. Moreover, if G is simple, from Theorem 2.3.4
we have Hr(P ) ⊆ Hf (P ), and from Lemma 2.2.5 it follows |N \Hf (P )| ≤ |N \Hr(P )| =
g(G), where g(G) is the genus of G. Therefore Hf (P ) is a numerical semigroup.

When the graph G is not clear from the context, we denote the functional Weier-
strass set by HG

f (P ). For two subsets A,B ⊆ N, we define

A+B = {a+ b : a ∈ A, b ∈ B}.

Proposition 2.4.2. Let G1 and G2 be two graphs, and let G be the graph obtained from
G1 and G2 by the vertex gluing of P1 ∈ V (G1) and P2 ∈ V (G2), and denote by P ∈ V (G)

the identified vertex in G. Then

HG
f (P ) = HG1

f (P1) +HG2
f (P2).

Proof. We will consider G1 and G2 as subgraphs of G. For simplicity, set S = HG
f (P )

and Si = HGi
f (Pi) for i ∈ {1, 2}. Let x ∈ S1, then there exists f ∈ M(G1) such that

∆(f) = D − xP1 for some effective divisor D ≥ 0. Consider the extension f ′ of f to G
by setting f ′(v) = f(P ) for all v ∈ V (G2) \ {P}. Then ∆(f ′) = ∆(f) and x ∈ S. This
proves S1 ⊆ S. Similarly we obtain S2 ⊆ S, thus S1 + S2 ⊆ S since S is closed under
addition.

On the other hand, let x ∈ S. Then there exists f ∈ M(G) such that ∆(f) =

D− xP for some D ≥ 0. Substituting f with f + a for some constant a ∈ Z if necessary,
we can assume that f(P ) = 0. For i ∈ {1, 2}, define

fi ∈ M(Gi) fi(v) = f(v) ∀v ∈ V (Gi) ⊆ V (G).

Since f(P ) = 0, we have ∆v(fi) = ∆v(f) ≥ 0 for all v ∈ V (Gi) \ {P} ⊆ V (G), with
i ∈ {1, 2}. Since every principal divisor has degree zero, we have

∆(f1) = D1 − x1P, ∆(f2) = D2 − x2P

for some x1, x2 ∈ N and some effective divisor Di ≥ 0 on Gi for i ∈ {1, 2}. From the
definition we have f = f1 + f2, therefore ∆(f) = ∆(f1) + ∆(f2), hence x = x1 + x2 ∈
S1 + S2.

Corollary 2.4.3. For every additive submonoid M of N there exists a graph G such that
M = Hf (P ) for some P ∈ V (G).
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Proof. From [100, Lemma 2.3], every additive submonoid of N is finitely generated, so sup-
pose that M = ⟨n1, . . . , ne⟩. Now let G be the graph with vertices V (G) = {P, P1, . . . , Pe}
where the vertex P has ni edges connected to the vertex Pi for every i ∈ {1, . . . , e}. From
Remark 2.3.5 and Proposition 2.4.2 it follows that Hf (P ) = n1N+ · · ·+ neN =M .

Corollary 2.4.4. For every numerical semigroup S there exists a simple graph G such
that S = Hf (P ) for some P ∈ V (G).

Proof. Suppose that S = ⟨n1, . . . , ne⟩. Set m = max(N\S)+2 and consider the complete
bipartite graphs Km,n1 , . . . , Km,ne . Fix a vertex of degree ni in each graph and construct
the graph G by identifying these vertices, recursively applying the vertex gluing. Denote
with P the identified vertex in G. From Proposition 2.4.2 and Lemma 2.3.9 we obtain
Hf (P ) = S.

Using Lemma 2.4.1 and Corollary 2.4.3 and 2.4.4 we now state the main result of
this section.

Theorem 2.4.5. The functional Weierstrass sets of graphs (resp. simple graphs) are
precisely the additive submonoids of N (resp. numerical semigroups).

We close the section by calculating the multiplicity of the functional Weierstrass
set of a simple graph. Recall that the multiplicity of a numerical semigroup S is the
integer m(S) = min(S \ {0}). Let G be a simple graph and fix a vertex P ∈ V (G).
Denote with G−P the graph obtained from G by removing the vertex P and its adjacent
edges.

Lemma 2.4.6. [70, Theorem 2.10] Suppose that G−P is connected. Then m(Hf (P )) =

deg(P ).

Proposition 2.4.7. Let G1, . . . , Gm be the connected components of G − P , and let
degGi

P be the number of edges incident with P in Gi. Then

m(Hf (P )) = min{degGi
P : i ∈ {1, . . . ,m}}.

Proof. Let Ci be the graph obtained from Gi by adding the vertex P and the edges of G
incident with P in Gi. The graph G can be seen as the vertex gluing of the graphs Ci
along P . Now it is enough to apply Proposition 2.4.2 and Lemma 2.4.6.

2.5 Rank Weierstrass sets

Let G be a graph and fix a vertex P ∈ V (G). Define the function λP : N → N by

λP (k) = min{n ∈ N : r(nP ) = k}.
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Note that the function λP is an order preserving bijection between N and Hr(P ). Thus,
λP completely determines Hr(P ) and vice versa. We will write λGP when the graph G is
not clear from the context.

Proposition 2.5.1. Let G1 and G2 be two graphs and fix Pi ∈ V (Gi) for i ∈ {1, 2}. Let
G be the vertex gluing of P1 and P2, and let P be the identified vertex. Then

λGP (k) = max
{
λG1
P1
(k1) + λG2

P2
(k2) : k1 + k2 = k

}
.

Proof. We will consider G1 and G2 as subgraphs of G. First, note that every divisor
E ∈ Divk+(G) can be decomposed as the sum E = E1 + E2 where Ei ∈ Divki+ (Gi) for
i ∈ {1, 2} with k1 + k2 = k. Further, if ∆f is a principal divisor in G, without loss of
generality we can assume that f(P ) = 0, so that f = f1 + f2 with f1 = 0 in G2 and
f2 = 0 in G1. It follows that ∆f = ∆f1 +∆f2, in other words any principal divisor in G
is the sum of two principal divisors in G1 and G2 respectively.

Claim. Let n, k ∈ N, the following statements are equivalent:

1. |nP − E| ≠ ∅ for every E ∈ Divk+(G),

2. n ≥ λG1
P1
(k1) + λG2

P2
(k2) for every k1 + k2 = k.

Proof of claim. First of all, set ni = λGi
Pi
(ki) for i ∈ {1, 2}.

1) ⇒ 2) Let k1, k2 ∈ N such that k1 + k2 = k. By the definition of ni, there exists Ei ∈
Divki+ (Gi) such that |(ni−1)P −Ei| = ∅ for i ∈ {1, 2}. Set E = E1+E2 ∈ Divk+(G).
By hypothesis we have

nP − E +∆f = nP + (∆f1 − E1) + (∆f2 − E2) ≥ 0,

for some f ∈ M(G), with f = f1+f2 as described above. Assume by contradiction
n < n1+n2, this means that, for some i ∈ {1, 2}, we have (ni−1)P −Ei+∆fi ≥ 0,
that is |(ni − 1)P − Ei| ≠ ∅, contradiction.

2) ⇒ 1) Let E ∈ Divk+(G), then E = E1 + E2 with Ei ∈ Divki+ (Gi) for i ∈ {1, 2}
and k1 + k2 = k. By the definition of ni, there exists fi ∈ M(Gi) such that
niP − Ei +∆fi ≥ 0 for i ∈ {1, 2}. Without loss of generality, we can assume that
f1(P ) = f2(P ) = 0, set f = f1 + f2, we have

nP − E +∆f ≥
∑
i∈{1,2}

(niP − Ei +∆fi) ≥ 0

that is |nP − E| ≠ ∅.
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Now write

λGP (k) = min{n ∈ N : r(nP ) ≥ k}

= min{n ∈ N : |nP − E| ≠ ∅, ∀E ∈ Divk+(G)}

= min{n ∈ N : n ≥ λG1
P1
(k1) + λG2

P2
(k2), for every k1 + k2 = k}

= max
{
λG1
P1
(k1) + λG2

P2
(k2) : k1 + k2 = k

}
.

Remark 2.5.2. We note that the notion of rank Weierstrass set implicitly appears in
[96, Section 3.2]. In fact, the so called Weierstrass partition of the zero divisor at a
marked point P encodes the information of the rank Weierstrass set Hr(P ) (see [96,
Definition 3.11]). Further, we note that one of the main techniques used in [96] to study
the behaviour of Weierstrass partitions is the (analogue of) vertex gluing of an arbitrary
metric graph with a cycle.

Theorem 2.5.3. Let e1 ≥ e2 ≥ · · · ≥ en ≥ 0 be integers and set si =
∑i

j=1 ej. There
exists a simple graph G with a vertex P ∈ V (G) such that

Hr(P ) = {0, s1, s2, . . . , sn−1} ∪ (sn + N).

Proof. We proceed by induction on n. For the base case n = 1, by Corollary 2.3.10 it is
enough to consider the graph K2,e1 and a vertex P of degree e1. Now assume that the
theorem is true for n− 1, and let G′ be a graph with a vertex P1 such that

HG′

r (P1) = {0, s1, . . . , sn−1} ∪ (sn−1 + N).

Consider the graph K2,en and fix a vertex P2 of degree en. Let G be the vertex gluing of
P1 and P2. From Corollary 2.3.10 we have

HK2,en
r (P2) = {0} ∪ (en + N).

Now apply Proposition 2.5.1 to the vertex gluing G of P1 and P2.

Remark 2.5.4. In the proof of Theorem 2.5.3 we glued together complete bipartite
graphs K2,ei along vertices of degree ei. However, we could have used any graph of genus
ei−1 with a fixed non-Weierstrass point, i.e. with a fixed vertex in which the Weierstrass
set is N \ {1, . . . , ei − 1}.

Remark 2.5.5. A numerical semigroup S is Arf if for every x, y, z ∈ S with x ≥ y ≥ z

we have x+y−z ∈ S. From Theorem 2.5.3 it follows that every Arf numerical semigroup
is the rank Weierstrass set of some graph. In fact, it is enough to choose the sequence
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e1 ≥ · · · ≥ en to be the multiplicity sequence of the given Arf numerical semigroup. See
[9, Section 2] for more information about Arf numerical semigroups and their multiplicity
sequence.

Theorem 2.5.3 can be used to construct families of graphs with rank Weierstrass
set that is not a semigroup. We now describe an example of such a graph.

Example 2.5.6. Let n = 3 and (e1, e2, e3) = (3, 2, 2). Following the idea in the proof
of Theorem 2.5.3, we consider the graph G (Figure 2.1) obtained as the vertex gluing of
K2,3 and two copies of K2,2. Let P ∈ V (G) be the identified vertex of degree 7. We have

Hr(P ) = {0, 3, 5, 7} ∪ (8 + N).

Note that Hr(P ) is not a semigroup, since 3 ∈ Hr(P ), but 3 + 3 = 6 /∈ Hr(P ). ♢

Figure 2.1

Theorem 2.5.3 gives a sufficient condition for a subset of N to be the rank Weier-
strass set of some graph. We now provide an easy necessary condition.

Proposition 2.5.7. Let G be a graph and fix a vertex P ∈ V (G). For every n, k ∈ N we
have ∣∣Hr(P ) ∩ [1, nk]

∣∣ ≥ k
∣∣Hr(P ) ∩ [1, n]

∣∣.
Proof. From the definition we have r(nP ) =

∣∣Hr(P ) ∩ [1, n]
∣∣, further from Lemma 2.2.1

r(nkP ) ≥ k r(nP ).

Question 2.5.8. Can we characterize the cofinite subsets H ⊆ N that are the rank
Weierstrass set of some graph?

In [8] the notion of harmonic morphism between graphs is studied. It is a discrete
analogue of morphisms of curves. In particular, in this context it makes sense to talk
about hyperelliptic graphs and double covers.

Classically, we know that a curve X is hyperelliptic if and only if there exists
P ∈ X such that 2 ∈ H(P ). An analogous fact is proved in [109, Theorem A]: a curve X
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of genus g ≥ 6γ + 4 is a double cover of a curve of genus γ ≥ 1 if and only if there exists
P ∈ X such that H(P ) has γ even gaps.

Question 2.5.9. Can we find an analogue of [109, Theorem A] for graphs?
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Chapter 3

Tropical linear degenerate flag varieties

This chapter is a readaptation of a joint work with Victoria Schleis.

3.1 Introduction

The GrassmannianG(r;n) parametrizes r-dimensional linear subspaces U of an n-dimensional
K-vector space V , and can be embedded in the projective space P(

n
r)−1 with equations

given by the Grassmann-Plücker relations.
A generalization of the Grassmannian is the flag variety Fl(r;n) parametrizing flags

of linear spaces of rank r = (r1, . . . , rk), that is, sequences of linear subspaces (U1, . . . , Uk)

of V with dim(Ui) = ri such that Ui ⊆ Ui+1 for all i ∈ {1, . . . , k − 1}. Similarly, a flag
variety can be embedded in a product of projective spaces and the equations of this
embedding are given by the incidence Plücker relations in addition to the Grassmann-
Plücker relations.

Flag varieties are further generalized by linear degenerate flag varieties parametriz-
ing linear degenerate flags of linear subspaces. These are defined as follows: fix a sequence
f∗ of linear maps fi : V → V for i ∈ {1, . . . , k − 1} and a rank vector r = (r1, . . . , rk).
An f∗-linear degenerate flag is a sequence of linear subspaces (U1, . . . , Uk) of V with
dim(Ui) = ri and such that fi(Ui) ⊆ Ui+1 for every i ∈ {1, . . . , k − 1}. The flag variety
is the f∗-linear degenerate flag variety where all the fi are equal to the identity. Further,
every f∗-linear degenerate flag variety can be given as a sequence of projections, using
the GL(V ) action on V for each fi, (see [49, Lemma 2.6]). Hence, in this paper we will
restrict to projections.

The tropicalization trop(G(r;n)) of the Grassmannian (thought inside the tropical
projective space P(T(

n
r)), see Section 3.2.1 for more details) parametrizes realizable val-

uated matroids of rank r on n elements, or equivalently realizable tropical linear spaces
(i.e. tropicalizations of linear spaces) of dimension r in P(Tn). The object parametriz-
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ing all valuated matroids of rank r on n elements, or equivalently all tropical linear
spaces of dimension r inside P(Tn), is a tropical prevariety Dr(r, n) called the Dressian
(see [106]). Its equations are the tropical Grassmann-Plücker relations, and we have
trop(G(r;n)) ⊆ Dr(r, n), although in general this inclusion might be strict.

Similarly, the tropicalization of the flag variety trop(Fl(r;n)) parametrizes realiz-
able valuated flag matroids, or equivalently realizable flags of tropical linear spaces (see
Section 3.2 for precise definitions).

In [19], Brandt, Eur and Zhang defined the flag Dressian FlDr(r;n), a tropical
prevariety with equations given by the incidence Plücker relations and the Grassmann-
Plücker relations. They proved that FlDr(r;n) parametrizes valuated flag matroids or
equivalently flags of tropical linear spaces (see Theorem 3.2.9).

In this paper, we define the linear degenerate flag Dressian LFlDr(r,S;n) of rank
r = (r1, . . . , rk) and degeneration type S = (S1, . . . , Sk−1). Here the ri are the dimensions
of the linear spaces of the linear degenerate flags, whereas the Si are the set of indices
corresponding to the projections prSi

defined by: prSi
(ej) = 0 if j ∈ Si and prSi

(ej) = ej

otherwise. The variety LFlDr(r,S;n) is defined as the tropical (pre)variety with equations
given by the linear degenerate incidence Plücker relations and the Grassmann-Plücker
relations. The following is our main result, which is a generalization of the work of
Brandt, Eur and Zhang [19].

Theorem A. Let µ = (µ1, . . . , µk) be a sequence of valuated matroids. The following
statements are equivalent:

(a) µ ∈ LFlDr(r,S;n);

(b) µ is a linear degenerate valuated flag matroid;

(c) prtropSi

(
trop(µi)

)
⊆ trop(µi+1) for all i ∈ {1, . . . , k − 1};

(d) every projection prSi
: µi+1 → µi is a morphism of valuated matroids.

The first statement in the above theorem expresses the fact that the valuations
of the bases of the valuated matroids µi satisfy the corresponding Plücker relations.
The second one expresses the fact that the matroids µi form certain valuated matroids
quotients. The third statement is about containments of certain projections of the tropical
linear spaces of the matroids µi. The last statement is a recast of the second one in terms
of morphisms of valuated matroids. See Section 3.3 for precise definitions.

Figure 3.1 represents two tropical flags. The flag on the left is a (classical) tropical
flag, consisting of a point (in yellow) contained in a tropical line (in red), contained in a
tropical plane (in blue). The flag on the right is a linear degenerate tropical flag: while
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the tropical line is yet contained in the tropical plane, only a projection of the point is
contained in the tropical line.

1
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(b)

Figure 3.1: (a): A tropical flag in trop
(
Fl((1, 2, 3); 4)

)
. (b): A tropical linear degenerate

flag in trop
(
LFl

(
(1, 2, 3), ({1}, ∅); 4

))
. Both are made of a yellow point, a red tropical

line, and a blue tropical plane. The additional subdivision given by the green dashed rays
on the tropical plane is useful for describing the (linear degenerate) tropical flag varieties,
see Examples 3.4.1 and 3.4.2.

The two extreme cases of linear degenerate flag varieties are flag varieties (by
setting all Si = ∅) and products of Grassmannians (by setting all Si = {1, . . . , n}). Hence,
linear degenerate flag varieties bridge the gap between products of Grassmannians and
flag varieties, see Section 3.4 for more details.

An analogous statement holds for the realizable case. We obtain the following
correspondence:

Theorem B. Let µ = (µ1, . . . , µk) be a sequence of realizable valuated matroids. The
following statements are equivalent:

(a) µ ∈ trop(LFl(r,S;n));

(b) µ is a realizable linear degenerate valuated flag matroid;

(c) prtropSi

(
trop(µi)

)
⊆ trop(µi+1) for all i ∈ {1, . . . , k − 1} and there exist realizations

L1, . . . , Lk of µ1, . . . , µk such that prSi
(Li) ⊆ Li+1 for all i ∈ {1, . . . , k − 1}.

(d) every projection prSi
: µi+1 → µi is a realizable morphism of valuated matroids,

and they can be realized simultaneously, using the same realization of µi, for all
i ∈ {1, . . . , k}.
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Linear degenerate flag varieties are of interest in representation theory. They were
studied in [23, 24, 43, 44, 45, 97]. It was observed in [25] that linear degenerate flag vari-
eties are isomorphic to quiver Grassmannians for type A quivers. Quiver Grassmannians
first appeared in [29, 102]. They are varieties parametrizing subrepresentations of quiver
representations. Notably, every projective variety is isomorphic to a quiver Grassmannian
[98]. In addition, every quiver Grassmannian can be naturally embedded in a product of
Grassmannians, and the equations of this embedding were described in [82].

A first step towards tropical flag varieties was made in [59] by Haque, showing
that the flag Dressian parametrizes flags of tropical linear spaces. The tropicalization
of (complete) flag varieties of length 4 and 5 were computed in [18]. In a related work
[39], tropical flag varieties are linked to PBW-degenerations. Further, in [67], in order
to combinatorially describe tropicalized Fano schemes, previously introduced in [79], the
authors studied the space of valuated flag matroids (µ1, µ2) of rank (r, r + 1) where µ2

is fixed. A generalization of valuated flag matroids to tracts has been made in [66].
Positivity for tropical flag Dressians has been studied in [5, 11, 12, 69, 105].

This paper is structured as follows. In Section 3.2 we review the needed background
knowledge and fix our notation. In Section 3.3 we define the linear degenerate flag
Dressian and prove our main results, Theorem A and Theorem B. Finally, in Section 3.4
we give some examples, first results on relationships of linear degenerate flag varieties
and Dressians with similar rank but different degeneration set and discuss some possible
applications and future work.

3.2 Preliminaries

3.2.1 Tropical Geometry

In this section, we review the basics of tropical geometry. Our main reference is [85]. We
follow the min-convention for all tropical and matroidal operations.

Set T = R∪{∞} and define a⊕ b = min{a, b} and a⊙ b = a+ b for every a, b ∈ T.
Then (T,⊕,⊙) is a semifield, called the tropical semifield. The tropical projective space
is P(Tn) = (Tn \ {(∞, . . . ,∞)})/R1 = (Tn \ {(∞, . . . ,∞)})/ ∼. Here we are quotienting
by the equivalence relation defined by: u ∼ v if u = v + c1 for some c ∈ R, where
1 = (1, . . . , 1) ∈ Rn. A tropical polynomial is an element of the semiring T[x0, . . . , xn]
in the variables x0, . . . , xn with coefficients in T. The tropical hypersurface of a tropical
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polynomial F =
⊕

u∈Nn+1 cu ⊙ xu ∈ T[x0, . . . , xn] is

V (F ) =

{
x ∈ P(Tn) : the minimum in

{
cu +

n∑
i=0

ui · xi

}
u∈Nn+1

is achieved at least twice

}
,

where whenever minu∈Nn+1{cu+
∑n

i=0 ui ·xi} = ∞, by convention the minimum is achieved
at least twice, even if the expression is a tropical monomial. The tropical variety of an
ideal of tropical polynomials J ⊆ T[x0, . . . , xn] is defined by

V (J) =
⋂
F∈J

V (F ) ⊆ P(Tn).

In the following, let K be a field with valuation val : K → T. The tropicalization of a
polynomial f =

∑
u∈Nn+1 aux

u ∈ K[x0, . . . , xn] is the tropical polynomial

trop(f) =
⊕

u∈Nn+1

val(au)⊙ xu ∈ T[x0, . . . , xn].

The tropicalization trop(I) of an ideal I ⊆ K[x0, . . . , xn] is the ideal of tropical
polynomials generated by the tropicalizations of all polynomials in I:

trop(I) = ⟨trop(f) : f ∈ I⟩ ⊆ T[x0, . . . , xn].

The tropicalization trop(X) of a subvariety X ⊆ Pn, when the base field K is algebraically
closed with a non-trivial valuation, is defined by

trop(X) = {(val(x0), . . . , val(xn)) ∈ P(Tn) : [x0 : · · · : xn] ∈ X},

where the closure is with respect to the Euclidean topology induced on P(Tn).

Now we have two possible ways of constructing a tropical variety from a homoge-
neous ideal of polynomials I ⊆ K[x0, . . . , xn]: we can first tropicalize the ideal, and then
take its tropical variety V (trop(I)), or we can consider the affine variety V (I) and tropi-
calize it to obtain trop(V (I)). The fundamental theorem of tropical geometry assures us
that, over algebraically closed fields with nontrivial valuation, these two operations yield
the same result, i.e. that trop(V (I)) = V (trop(I)), see [85, Theorem 6.2.15].

We use the notation trop(X) for the tropicalization of a subvariety X ⊆ Pn and
denote by trop(X) the intersection trop(X)∩(Rn/R1), which is the tropicalization inside
Rn/R1 of the intersection X ∩ T n, where T n ≃ (K \ {0})n is the algebraic torus inside
Pn. That is, trop(X) might contain points in which some of the coordinates are ∞. For
a thorough description of this extension of tropical varieties, we refer to [19, Section 2]
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and [85, Section 6.2].
Further, tropical varieties have a nice polyhedral structure: for an irreducible

subvariety V (I) of dimension d in the torus T n, the tropical variety trop(V (I)) is the
support of a d-dimensional, rational, balanced polyhedral complex that is connected
through codimension one, see [85, Theorem 3.3.5] for more details.

3.2.2 Valuated matroids and tropical linear spaces

Throughout, we will assume that the reader is familiar with basic matroid theory, see
[95] and [111]. We denote [n] for the set {1, 2, . . . , n} and

(
[n]
r

)
for the family of subsets

of [n] of cardinality r.

Definition 3.2.1. A valuated matroid of rank r on the ground set [n] is a function
ν :

(
[n]
r

)
→ T such that: ν(B) ̸= ∞ for some B ∈

(
[n]
r

)
, and for all I, J ∈

(
[n]
r

)
and

i ∈ I \ J there exists j ∈ J \ I satisfying

ν(I) + ν(J) ≥ ν((I \ i) ∪ j) + ν((J \ j) ∪ i).

Two rank r valuated matroids µ and ν on the common ground set [n] are equivalent
if there exists a ∈ R such that µ(B) = ν(B)+a for every B ∈

(
[n]
r

)
. In other words, every

equivalence class of a valuated matroid ν :
(
[n]
r

)
→ T can be seen as a point in P(T(

n
r)).

Throughout, we will regard two equivalent valuated matroids as being the same, and
consider valuated matroids only up to equivalence.

If ν :
(
[n]
r

)
→ T is a valuated matroid, then {B ∈

(
[n]
r

)
: ν(B) ̸= ∞} is a collection

of bases of a matroid N , called the underlying matroid of ν.

Definition 3.2.2. Let M and N be two matroids over the same ground set [n]. We say
that M is a matroid quotient of N , denoted M ↞ N , if every flat of M is a flat of N .

Definition 3.2.3 ([19, Definition 4.2.2]). Let µ and ν be two valuated matroids on the
ground set [n] of rank r ≤ s respectively. We say that µ is a valuated matroid quotient
of ν, denoted µ ↞ ν, if for every I ∈

(
[n]
r

)
, J ∈

(
[n]
s

)
and i ∈ I \ J , there exists j ∈ J \ I

such that
µ(I) + ν(J) ≥ µ(I ∪ j \ i) + ν(J ∪ i \ j).

If µ↞ ν is a valuated matroid quotient, and M and N are the underlying matroids
of µ and ν respectively, then M ↞ N .

Definition 3.2.4. A sequence of valuated matroids µ = (µ1, . . . , µk) on a common
ground set [n], is a valuated flag matroid if µi ↞ µj for every 1 ≤ i ≤ j ≤ k. Analogously,

45



a sequence of matroids M = (M1, . . . ,Mk) on [n] is a flag matroid if Mi ↞Mj for every
1 ≤ i ≤ j ≤ n.

Let K be a field with valuation val : K → T. Let L be an r-dimensional vector
subspace of Kn given as the row span of a matrix A. We denote by (pI) the Plücker
coordinates of L, where pI is defined as the minor of A indexed by I ∈

(
[n]
r

)
. Then,

the function µ(L) :
(
[n]
r

)
→ T defined by I 7→ val(pI) is a valuated matroid satisfying

Definition 3.2.1, and we denote by M(L) its underlying matroid. The valuated matroid
µ(L) is well defined only up to equivalence, since different choices of the matrix A will
give rise to equivalent valuated matroids. Matroids arising in this way are called realizable
(over K). As in [19, Example 4.1.2], if L1 ⊆ L2 are two linear subspaces of Kn, then
we have µ(L1) ↞ µ(L2). Matroid quotients arising in this way are called realizable (over
K). Note that a matroid quotient M ↞ N of two realizable matroids is not necessarily
realizable (see [13, §1.7.5, Example 7]).

Definition 3.2.5. Let µ be a valuated matroid of rank r on [n]. For each I ∈
(

[n]
r+1

)
define an element Cµ(I) ∈ Tn by

Cµ(I)i =

µ(I \ i) i ∈ I,

∞ i /∈ I.

The set of valuated circuits C(µ) of µ is defined as the image in P(Tn) of the following
set: {

Cµ(I) : I ∈
(

[n]

r + 1

)}
\ {(∞, . . . ,∞)}.

A cycle of a matroid is a union of circuits. A vector (or valuated cycle) of µ is any element
of P(Tn) (tropically) generated by the valuated circuits. More explicitly, the family of
vectors is

V(µ) =

 ⊕
C∈C(µ)

λC ⊙ C : λC ∈ T, λC ̸= ∞

 .

For more information about vectors of a valuated matroid see [83, Section 2.1].

Definition 3.2.6. Let µ be a valuated matroid on [n]. The tropical linear space of µ is
the tropical variety

trop(µ) =
⋂

C∈C(µ)

V

⊕
i∈[n]

Ci ⊙ xi

 ⊆ P(Tn).
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3.2.3 Plücker relations and the Flag Dressian

In the following, let K be a field with valuation val : K → T.

Definition 3.2.7. Let r ≤ s ≤ n be nonnegative integers. The incidence Plücker re-
lations are the polynomials in the variables {pI : I ∈

(
[n]
r

)
} ∪ {pJ : J ∈

(
[n]
s

)
} with

coefficients in K:

Pr,s;n =

∑
j∈J\I

sgn(j; I, J)pI∪jpJ\j : I ∈
(

[n]

r − 1

)
, J ∈

(
[n]

s+ 1

)
where sgn(j; I, J) = (−1)#{j′∈J :j<j′}+#{i∈I:i>j}. The tropicalization of the incidence
Plücker relations are denoted by Ptrop

r,s;n. The Grassmann-Plücker relations are the poly-
nomials Pr;n := Pr,r;n, and their tropicalization are denoted by Ptrop

r;n . They are the
equations of the Plücker embedding of the Grassmannian G(r;n).

The incidence-Plücker relations are, combined with the Grassmann-Plücker rela-
tions, the equations of flag varieties, defined as follows. Let r1 ≤ · · · ≤ rk ≤ n be
nonnegative integers, and set r = (r1, . . . , rk). The flag variety is the following subvariety
of P(

n
r1
)−1 × · · · × P(

n
rk
)−1

Fl(r;n) = V
(
{Pri;n}1≤i≤k ∪ {Pri,rj ;n}1≤i<j≤k

)
.

Remark 3.2.8. Grassmannians and flag varieties have two respective tropical ana-
logues. Tropical Grassmannians trop(G(r;n)) and tropical flag varieties trop(Fl(r;n))

are tropicalizations of their classical analogues, as in Section 3.2.1. These tropical va-
rieties parametrize tropicalized objects: trop(G(r;n)) parametrizes tropicalizations of
linear subspaces of Kn of dimension r and trop(Fl(r;n)) parametrizes realizable tropical
flags trop(L1) ⊆ · · · ⊆ trop(Lk) where L1 ⊆ · · · ⊆ Lk is a flag of subspaces of Kn satisfy-
ing dimLi = ri. Dressians Dr(r;n) and flag Dressians FlDr(r;n) are the intersections of
the tropical hypersurfaces given by their respective Plücker relations. They are tropical
prevarieties and parametrize tropical objects. In general, (flag) Dressians and tropical
Grassmannians are different polyhedral complexes. The Dressian Dr(r;n) parametrizes
(not necessarily realizable) tropical linear spaces of rank r in P(Tn) as in Definition 3.2.6.
Flag Dressians parametrize (not necessarily realizable) flags of tropical linear spaces:

Theorem 3.2.9 ([59, Theorem 1],[19, Theorem A]). Let µ = (µ1, . . . , µk) be a sequence
of valuated matroids on common ground set [n] of rank r = (r1, . . . , rk) respectively. The
following statements are equivalent:

(a) µ is a point in FlDr(r;n) =
⋂

1≤i≤k V (Ptrop
ri;n

) ∩
⋂

1≤i<j≤k V (Ptrop
ri,rj ;n

),
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(b) µ is a valuated flag matroid,
(c) trop(µ1) ⊆ · · · ⊆ trop(µk).

Example 3.2.10. In this example we describe the tropicalization of the flag variety
Fl(1, 2; 4). By definition, Fl(1, 2; 4) = V (P2;4 ∪P1,2;4), since P1;4 contains just the zero
polynomial. We write down the tropicalizations of the equations defining the ideal:

Ptrop
2;4 = {p1,4p2,3 ⊕ p1,3p2,4 ⊕ p1,2p3,4} ,

Ptrop
1,2;4 =


p1p2,3 ⊕ p2p1,3 ⊕ p3p1,2,

p4p1,2 ⊕ p2p1,4 ⊕ p1p2,4,

p4p1,3 ⊕ p1p3,4 ⊕ p3p1,4,

p4p2,3 ⊕ p2p3,4 ⊕ p3p2,4

 .

The tropicalization trop
(
Fl(1, 2; 4)

)
can be computed in Macaulay2 [58] and is a 7-

dimensional simplicial fan in R10 with a lineality space of dimension 5 and f-vector
(1, 10, 15) after taking the quotient by the lineality space. The tropical variety mod-
ulo lineality space is a Petersen graph (see Figure 3.2).

Figure 3.2: Petersen graph

A point in a top-dimensional cone (i.e., a cone over an edge of the Petersen graph)
parametrizes a generic tropical line in 4-space with two vertices containing a point. The
first vertex can be freely chosen. Then, after accounting for symmetry, there are three
choices for the direction of the two outgoing ends of the vertex. This fixes the directions
of the edge and the remaining legs by balancing. Finally, the length of the bounded edge
can be freely chosen, as can the position of the point on the line. The specific edge of the
Petersen graph on which a point lies provides the information about the direction of the
outgoing legs, and indicates on which leg or edge the point lies. In total, this generates
a cone of dimension seven. ♢
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3.3 Linear Degenerate Flag Dressian

In this section, we define the linear degenerate flag Dressian and prove the equivalences
of our main results, Theorem A and Theorem B.

3.3.1 Linear degenerate Plücker relations

We start by defining the linear degenerate Plücker relations.

Definition 3.3.1 (Linear degenerate Plücker relations). Let r ≤ s ≤ n be nonnegative
integers and let S ⊆ [n]. The linear degenerate Plücker relations are the polynomials in
the variables {pI : I ∈

(
[n]
r

)
} ∪ {pJ : J ∈

(
[n]
s

)
} with coefficients in K:

Pr,s;S;n =

 ∑
j∈J\(I∪S)

sgn(j; I, J)pI∪jpJ\j : I ∈
(

[n]

r − 1

)
, J ∈

(
[n]

s+ 1

)
where sgn(j; I, J) = (−1)#{j′∈J :j<j′}+#{i∈I:i>j}. We denote their tropicalizations by Ptrop

r,s;S;n.

Note that with this notation we have Pr,s;∅;n = Pr,s;n.

Linear degenerate Plücker relations appear in [24, Section 5.1], arising as initial
degenerations of the Plücker relations. The form in which we are expressing them here
can be deduced from the relations given in [82]. The linear degenerate Plücker relations
parametrize linear degenerate flags of linear spaces. For the sake of completeness, we
give a proof similar to the original proof of the classical Plücker relations following [10,
Theorem 1.8].

First, we introduce some more notation. For a subset of indices S ⊆ [n], we define
the linear map prS : Kn → Kn by prS(ei) = 0 if i ∈ S and prS(ei) = ei otherwise.

Proposition 3.3.2. Let U and V be vector subspaces of Kn of dimension r ≤ s respec-
tively, and let S ⊆ [n]. We have prS(U) ⊆ V if and only if the Plücker coordinates of U
and V satisfy the linear degenerate Plücker relations Pr,s;S;n.

Proof. Suppose that prS(U) ⊆ V . Let A ∈ Kr,n be a matrix whose rows are a basis
of U , and let A′ ∈ Kr,n be the matrix obtained from A by substituting the columns
indexed by S with columns of zeros. Note that the rows of A′ are a set of generators for
prS(U). Let B ∈ Ks,n be a matrix whose rows are a basis of V , obtained by extending
a basis of prS(U) consisting of rows of A′. Fix I = {i1 < · · · < ir−1} ∈

(
[n]
r−1

)
and

J = {j1 < · · · < js+1} ∈
(
[n]
s+1

)
. The column vectors Bj1 , . . . , Bjs+1 are linearly dependent,
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and they satisfy the unique (up to scalar) dependency relation

s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) ·Bjk = 0.

In particular, from the construction of A′ and B we also obtain

s+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk
= 0.

Substituting the above expression of the (r-dimensional) zero vector in the equality
det(0, Ai1 , . . . , Air−1) = 0 we obtain

det

( r+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk
, Ai1 , . . . , Air−1

)
=

r+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · det(A′
jk
, Ai1 , . . . , Air−1) = 0.

Now by construction we have

A′
jk
=

Ajk if jk /∈ S,

0 if jk ∈ S.

Thus, it is possible to check that the above relations are the desired linear degenerate
Plücker relations, up to a possible change of sign that depends on r and s.

Conversely, suppose that the Plücker coordinates of U and V satisfy the linear
degenerate Plücker relations. Let A and A′ be as above, and let B ∈ Ks,n be a matrix
whose rows are a basis of V . We need to show that the rows of A′ are spanned by the
rows of B. Let I = {i1 < · · · < ir−1} ∈

(
[n]
r−1

)
and J = {j1 < · · · < js+1} ∈

(
[n]
s+1

)
.

Proceeding similarly as above, from the incidence Plücker relations we can write

det

( r+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk
, Ai1 , . . . , Air−1

)
= 0. (3.1)

Since A has maximal rank, we can choose a subset I ′ ∈
(
[n]
r

)
such that the columns of A

indexed by I ′ form a basis. By choosing all possible cardinality r − 1 subsets I ⊆ I ′ in
(3.1), we have that the first vector in the argument of the determinant in (3.1) is in the
span of the spaces generated by the vectors indexed by all such sets I. This is possible
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only for the zero vector. Therefore, we obtain:

r+1∑
k=1

(−1)k det(Bj1 , . . . , Bjk−1
, Bjk+1

, . . . , Bjs+1) · A′
jk
= 0.

Let C be the matrix consisting of the rows of B plus an additional row of A′. By using
Laplace expansion on C with respect to the row of A′, the above dependencies tell us
that the rank of C is equal to the rank of B, i.e., that the row of A′ in C is a linear
combination of the rows of B.

Let r1 ≤ · · · ≤ rk ≤ n be nonnegative integers, let S1, . . . , Sk ⊆ [n], and denote by
r = (r1, . . . , rk), S = (S1, . . . , Sk−1), and Sij = Si ∪ Si+1 ∪ · · · ∪ Sj−1 for 1 ≤ i < j ≤ k.

Definition 3.3.3 (Linear degenerate flag variety). The linear degenerate flag variety of
rank r and degeneration type S is the following subvariety of P(

n
r1
)−1 × · · · × P(

n
rk
)−1

LFl(r,S;n) = V
(
{Pri;n}1≤i≤k ∪ {Pri,rj ;Sij ;n}1≤i<j≤k

)
.

We call its tropicalization the linear degenerate tropical flag variety.

A consequence of Proposition 3.3.2 is (a) ⇔ (b) of Theorem B. Before proving it,
we introduce some more notation. First, we recall the definition of deletion for valuated
matroids.

Proposition-Definition 3.3.4 ([35, Proposition 1.2]). Let µ be a rank-r matroid on [n]

with underlying matroid M , and let S ⊆ [n]. Let k be the rank of the deletion M \ S.
Choose I ∈

(
S
r−k

)
such that ([n] \ S) ∪ I has rank r. Then, the map µ \ S :

(
[n]\S
k

)
→ T

defined by (µ \ S)(B) = µ(B ∪ I) is a valuated matroid, with underlying matroid M \ S.
Further, µ \ S is compatible with equivalence, and different choices of I give rise to
equivalent valuated matroids. The matroid µ \ S is called the deletion of µ by S ⊆ [n].

Let µ be a valuated matroid on [n]. We denote by µS the valuated matroid on [n]

obtained from µ in the following way. For every B ∈
(
[n]
k

)
, where k is the rank of µ \ S,

we set

µS(B) =

(µ \ S)(B) if B ∩ S = ∅,

∞ otherwise.
(3.2)

The matroid µS can be alternatively regarded as a direct sum of valuated matroids:

µS = (µ \ S)⊕ U0,|S|,

where we add the deleted elements of the ground set as loops. For a definition of direct
sum of valuated matroids, see [65, Definition 2.6].
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Recall that we can view (an equivalence class of) a valuated matroid µ :
(
[n]
r

)
→ T

as a point µ ∈ P(T(
n
r)), and similarly a pair of valuated matroids (µ, ν) of rank r and s

respectively, can be viewed as a point µ × ν ∈ P(T(
n
r)) × P(T(

n
s)). We are now ready to

prove (a) ⇔ (b) of Theorem B.

Corollary 3.3.5. Let µ and ν be two realizable valuated matroids of rank r and s, on the
common ground set [n], and let S ⊆ [n]. Then, µ × ν ∈ trop(LFl(r, s, S;n)) if and only
if µS ↞ ν is a realizable quotient of valuated matroids.

Proof. If µ × ν ∈ trop(LFl(r, s, S;n)) then, from the fundamental theorem of tropical
geometry [85], there exist realizations U of µ and V of ν such that the Plücker coor-
dinates of U and V are a point of LFl(r, s, S;n). From Proposition 3.3.2 this implies
that prS(U) ⊆ V . Now note that, by definition, the valuated matroid of prS(U) is µS,
therefore, from Theorem 3.2.9 we have that prS(U) ⊆ V implies µS ↞ ν and the last
quotient is realizable.

Conversely, assume that µS ↞ ν is a realizable quotient. By definition, µS is
realizable. Since µ and ν are both realizable, this means that there exist realizations U
of µ and V of ν are such that prS(U) ⊆ V . From Proposition 3.3.2 this implies that the
Plücker coordinates of U and V satisfy the linear degenerate Plücker relations. Therefore
the Plücker coordinates of their valuated matroids µ and ν are tropicalization of the
Plücker coordinates, that is µ× ν ∈ trop(LFl(r, s, S;n)).

Example 3.3.6. In this example we describe the tropicalization of the linear degenerate
flag variety LFl((1, 2), {1}; 4). By definition LFl((1, 2), {1}; 4) = V (P2;4 ∪ P1,2;{1};4),

since P1;4 contains just the zero polynomial. We write down the tropicalizations of the
equations defining the ideal:

Ptrop
2;4 = {p1,4p2,3 ⊕ p1,3p2,4 ⊕ p1,2p3,4} ,

Ptrop
1,2;{1};4 =


p3p1,2 ⊕ p2p1,3,

p4p1,2 ⊕ p2p1,4,

p4p1,3 ⊕ p3p1,4,

p4p2,3 ⊕ p3p2,4 ⊕ p2p3,4.


Note that the polynomials in Ptrop

1,2;{1};4 are obtained from those in Ptrop
1,2;4 by delet-

ing all monomials containing p1 (compare with Example 3.2.10). The tropicalization
trop

(
LFl((1, 2), {1}; 4)

)
can be computed in Macaulay2 [58] and is a 7-dimensional sim-

plicial fan in R10. Its lineality space has dimension 6 and the quotient of the variety by
the lineality space has f-vector (1, 3).
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A point p in trop
(
LFl((1, 2), {1}; 4)

)
corresponds to a tropical line Lp in 4-space

with a point vp contained after (tropical) projection in direction x1. This containment
can only be satisfied if Lp has a ray in direction x1. The three maximal cones correspond
to the (after symmetry) three possible choices for direction vectors turning Lp into a
balanced polyhedral complex. The dimensions of the cones can be derived in a similar
argument as in Example 3.2.10. ♢

Definition 3.3.7 (Linear degenerate flag Dressian). The linear degenerate flag Dressian
of rank r and degeneration type S is the tropical prevariety

LFlDr(r,S;n) ⊆ P(T(
n
r1
))× · · · × P(T(

n
rk
))

given by the intersection of the tropical hypersurfaces of the tropical polynomials in
{Ptrop

ri;n
}1≤i≤k ∪ {Ptrop

ri,rj ;Sij ;n
}1≤i<j≤k.

Now, for S ⊆ [n], define the projection map prtropS : Tn → Tn by

(
prtropS (x1, . . . , xn)

)
i

=

xi if i /∈ S,

∞ if i ∈ S.

The projection prtropS does not give us a well-defined map on the tropical projective space
P(Tn). Denote by φ : Tn \ {(∞, . . . ,∞)} → P(Tn) the natural quotient map. By abuse
of notation, for a subset X ⊆ P(Tn) we set

prtropS (X) = φ
(
prtropS

(
φ−1(X)

)
\ {(∞, . . . ,∞)}

)
.

Definition 3.3.8 (Linear degenerate tropical flag). A linear degenerate tropical flag of
degeneration type S = (S1, . . . , Sk−1), with Si ⊆ [n], is a sequence of tropical linear
spaces (trop(µ1), . . . , trop(µk)) on P(Tn) such that for all i ∈ {1, . . . , k − 1} we have
prtropSi

(trop(µi)) ⊆ trop(µi+1).

A picture of a linear degenerate tropical flag can be found in Figure 3.1(b).

To show that points in the linear degenerate flag Dressian parametrize linear de-
generate tropical flags, and thus (a) ⇔ (c) in Theorem A, we give an equivalent definition
of tropical linear spaces in terms of cocircuits.

Definition 3.3.9. The dual of a valuated matroid µ is the valuated matroid µ∗ defined
by µ∗(I) = µ([n]\I) for all I ∈

(
[n]
d

)
. The valuated cocircuits of µ are the valuated circuits
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of µ∗. For each I ∈
(

[n]
r−1

)
define C∗

µ(I) ∈ Tn by

C∗
µ(I)i =

µ(I ∪ i) i /∈ I,

∞ i ∈ I.

The set of valuated cocircuits C∗(µ) is the image in P(Tn) of the following set:{
C∗
µ(I) : I ∈

(
[n]

r − 1

)}
\ {(∞, . . . ,∞)}.

Let µ be a valuated matroid on [n]. Its tropical linear space can be equivalently
defined as the span of its cocircuits (see, for instance, [19, Theorem B]):

trop(µ) =

 ⊕
C∈C∗(µ)

λC ⊙ C : λC ∈ T, λC ̸= ∞

 . (3.3)

Proposition 3.3.10. Let µ and ν be two valuated matroids on a common ground set [n],
of rank r and s respectively, and let S ⊆ [n]. The following statements are equivalent:

(1) µ× ν ∈ LFlDr(r, s, S;n),

(2) prtropS (trop(µ)) ⊆ trop(ν).

Proof. Each µ and ν satisfy its respective tropical Grassmann-Plücker relations if and
only if µ and ν are valuated matroids respectively.

Now µ × ν ∈ LFlDr(r, s, S;n) if and only if for every I ∈
(

[n]
r−1

)
, J ∈

(
[n]
s+1

)
the

minimum in ⊕
j∈J\(I∪S)

pI∪jpJ\j.

is achieved at least twice. Since, from Definition 3.3.9, we have

(
prtropS

(
C∗
µ(I)

))
j

=

µ(I ∪ j) if j /∈ I ∪ S

∞ otherwise,

the above statement is equivalent to requiring that, for every I ∈
(

[n]
r−1

)
and J ∈

(
[n]
s+1

)
,

the minimum in⊕
j∈J\(I∪S)

µ(I ∪ j)⊙ ν(J \ j) =
⊕

j∈J\(I∪S)

C∗
µ(I)j ⊙ Cν(J)j

=
⊕
j∈[n]

(
prtropS

(
C∗
µ(I)

))
j

⊙ Cν(J)j
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is achieved at least twice. This holds true if and only if for every valuated cocircuit C∗
µ(I)

of µ and every valuated circuit Cν(J) of ν, we have

prS(C
∗
µ(I)) ∈ V

⊕
j∈[n]

Cν(J)j ⊙ xi

 .

The above statement is equivalent to prS(C
∗
µ(I)) ∈ trop(ν) for every valuated cocircuit

C∗
µ(I). By (3.3) and the fact that tropical linear spaces are tropically convex [32], this is

equivalent to prtropS (trop(µ)) ⊆ trop(ν).

This proves (a) ⇔ (c) in Theorem A.

Remark 3.3.11. One could define the linear degenerate flag Dressian with just the
“consecutive" incidence Plücker relations Ptrop

ri,ri+1;Si,i+1;n
, instead of taking all the relations

Ptrop
ri,rj ;Si,j ;n

for 1 ≤ i < j ≤ n. One of the consequences of the previous proposition is that
these two a priori different ways of defining the linear degenerate flag Dressian give rise
to the same tropical prevariety.

Remark 3.3.12. As observed in Remark 3.2.8 for the flag Dressian and the flag variety,
the tropicalization of the linear degenerate flag variety and the linear degenerate flag
variety are, in general, different. In general, the linear degenerate tropical flag variety
and the linear degenerate flag Dressian can be different, as the tropical flag variety and
the flag Dressian differ, see [19, Example 5.2.4]. Further, even the linear degenerate
flag varieties with highest degeneration (i.e. Si = [n] for all i in Definition 3.3.7) are
expected to be different. They are products of tropicalized Grassmannians and products
of Dressians respectively, and Dressians and tropical Grassmannians are different for large
enough k and n.

3.3.2 Linear degenerate valuated flag matroids

In this section, we prove the equivalence (b) ⇔ (c) of Theorem A and Theorem B, that
is, (realizable) linear degenerate valuated flag matroids correspond to (realizable) linear
degenerate tropical flags. We begin by defining linear degenerate valuated flag matroids.
Again, for a valuated matroid µ on [n] and a subset S ⊆ [n] we are going to use our
notation µS defined in (3.2). More explicitly, the valuated circuits of the deletion µ \ S
are

C(µ \ S) =
{
C|[n]\S : C ∈ C(µ), supp(C) ⊆ [n] \ S

}
. (3.4)
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This is a direct consequence of [90, Theorem 3.1]. For the formulation used here, see [19,
Theorem 3.1.6].

Definition 3.3.13 (Linear degenerate valuated flag matroid). A sequence µ = (µ1, . . . , µk)

of valuated matroids on [n] is a linear degenerate valuated flag matroid if for all i ∈
{1, . . . , k−1}, there exists Si ⊆ [n] such that (µi)Si

↞ µi+1. In addition, µ is realizable if
the quotient (µi)Si

↞ µi+1 is realizable for all i ∈ {1, . . . , k−1} using the same realization
Li for the quotients (µi−1)Si−1

↞ µi and (µi)Si
↞ µi+1.

Proposition 3.3.14. Let µ be a valuated matroid on the ground set [n] and let S ⊂ [n].
Then

prtrop{S} (trop(µ)) = trop (µ \ S)× {∞}{S} = trop(µS).

Proof. The second equality follows from the definition of µS. Now we prove the first
equality. First, we note that we can restrict to the case S = {s} and obtain the result
for arbitrary S by inductively re-applying the one-element case.

Let v ∈ trop(µ). Then the minimum in {Ci + vi}i∈[n] is achieved at least twice for
every C ∈ C(µ). In particular, the minimum in {Ci + vi}i∈[n]\s is achieved at least twice
for every C ∈ C(µ) where supp(C) ⊆ [n] \ s. From (3.4), prtrop{s} (v) ∈ trop(µ \ s)×{∞}{s}.
This proves the first inclusion.

For the reverse inclusion, let v ∈ trop(µ \ s) × {∞}{s}. Then, the minimum in
{Ci + vi}i∈[n]\s is achieved at least twice for every C ∈ C(µ \ s). From (3.4) this means it
is achieved at least twice for every C ∈ C(µ) with supp(C) ⊆ [n]\s. Now we want to find
some t ∈ T such that the vector ṽ = (v1, . . . , vs−1, t, vs+1, . . . , vn) ∈ P(Tn), is in trop(µ).
Then v = prtrop{s} (ṽ) ∈ prtrop{s} (trop(µ)).

If for every C ∈ C(µ) the minimum in {Ci + vi}i∈[n]\s is achieved at least twice,
we can set t = ∞ and we are done. Therefore, we assume that there exists a circuit
C ∈ C(µ) such that the minimum in {Ci+ vi}i∈[n]\s is achieved only once. Let t ∈ R such
that t+Cs = mini∈[n]\s{Ci + vi}. Then, the minimum in {Ci + ṽi}i∈[n] is achieved twice.
We claim that ṽ ∈ trop(µ).

We proceed by contradiction. Let C ′ ∈ C(µ) and assume that the minimum in
{C ′

i+ṽi}i∈[n] is achieved only once at the index j ∈ [n]. Up to tropical scalar multiplication
we can assume that C ′

s = Cs ̸= ∞. Suppose first that j ̸= s. By construction, vi + Ci ≥
t + Cs = t + C ′

s > vj + C ′
j for every i ∈ [n], in particular Cj ̸= C ′

j. On the other hand,
we have vi + C ′

i > vj + C ′
j for every i ̸= j, therefore vi +min(Ci, C

′
i) > vj + C ′

j for every
i ̸= j. From [90, Theorem 3.4] there exists a valuated cycle C ′′ of µ such that C ′′

s = ∞,
C ′′
i ≥ min{Ci, C ′

i} for all i ∈ [n] with equality whenever Ci ̸= C ′
i, in particular C ′′

j = C ′
j.

But now supp(C ′′) ⊆ [n] \ s, so the minimum in {C ′′
i + vi}i∈[n]\s has to be achieved at

least twice, contradicting vi + C ′′
i ≥ vi +min(Ci, C

′
i) > vj + C ′

j for every i ̸= j.
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Now suppose that j = s. Let k ∈ [n] be the index at which the minimum in
{vi + Ci}i∈[n]\s is achieved. Then we have vk + Ck = t + Cs = t + C ′

s < vi + C ′
i for

every i ̸= s, in particular Ck < C ′
k. Now, applying [90, Theorem 3.4] again, we obtain

a valuated cycle C ′′ with the same properties as above, in particular C ′′
k = Ck. Then,

vk+C
′′
k = vk+Ck < vi+C

′
i and further vk+C ′′

k = vk+Ck < vi+Ci for every i ̸= s, k. This
contradicts the fact that the minimum in {vi + C ′′

i }i∈[n]\s is achieved at least twice.

Theorem 3.3.15. Let µ and ν be valuated matroids on a common ground set [n]. The
following statements are equivalent

(1) µS ↞ ν,

(2) prtropS (trop(µ)) ⊆ trop(ν).

Proof. From Theorem 3.2.9 (b) ⇔ (c) and Proposition 3.3.14, we have µS ↞ ν if and
only if prtropS (trop(µ)) = trop(µS) ⊆ trop(ν).

3.3.3 Morphisms of valuated matroids

In this section, we outline how we can recast the definition of linear degenerate valuated
flag matroids in terms of morphisms of valuated matroids (as defined in [19, Remark
4.3.3]) and prove Theorem A (b) ⇔ (d). The advantage of doing so is that this allows for
further generalizations. For instance one can define a quiver Dressian by using morphisms
of valuated matroids in place of linear maps between linear spaces.

Let M (or µ) be a (valuated) matroid on the ground set [m]. Let o be an element
not in [m]. We denote by Mo (or µo) the matroid M ⊕ U0,1 (or µ ⊕ U0,1) obtained by
adding o as a loop.

In addition, let N be a matroid on the ground set [n]. A morphism (or strong
map) of matroids f : M → N is a map of sets f : [m] ∪ {o} → [n] ∪ {o} such that
f(o) = o and the inverse image of a flat in No is a flat in Mo. Morphisms of matroids can
be characterized in terms of matroid quotients.

Definition 3.3.16. Let f : [m] → [n] be a map of sets and N a matroid over [n]. The
induced matroid f−1(N) on [m] is defined by rkf−1(N)(A) = rkN(f(A)) for every A ⊆ [m].

Lemma 3.3.17 ([38, Lemma 2.4]). The map of sets f : [m] ∪ {o} → [n] ∪ {o} with
f(o) = o is a morphism of matroids if and only if f−1(No) ↞Mo.

Now we use the above characterization to extend the definition of morphism to
valuated matroids, starting from the notion of quotients of valuated matroids.
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Proposition 3.3.18. Let f : [m] → [n] be a surjective map of sets and let ν be a valuated
matroid on [n] of rank r with underlying matroid N . The function f−1(ν) :

(
[m]
r

)
→ T

defined by

f−1(ν)(I) =

ν(f(I)) if I is a basis of f−1(N),

∞ otherwise,

is a valuated matroid with underlying matroid f−1(N).

Proof. Since f is surjective, N and f−1(N) have the same rank r. Now if B ∈
(
[m]
r

)
, then

from rkf−1(N)(B) = rkN(f(B)) we have that B is a basis of f−1(N) if and only if f(B)

is a basis of N . This proves that the map f−1(ν) is well defined. In particular, if B is a
basis of f−1(N), then |B| = |f(B)|, so the restriction of f on B is bijective.

Now it suffices to show that for I, J ∈
(
[m]
r

)
and i ∈ I \ J there exists j ∈ J \ I

such that

f−1(ν)(I) + f−1(ν)(J) ≥ f−1(ν)(I ∪ j \ i) + f−1(ν)(J ∪ i \ j). (3.5)

If I or J is not a basis of f−1(N), then the left hand side of the above inequality is ∞
and we are done. Otherwise, assume that I and J are bases of f−1(N). This means that
f(I) and f(J) are bases of ν. Now, if f(i) ∈ f(I) \ f(J), then there exists j ∈ J such
that

ν(f(I)) + ν(f(J)) ≥ ν(f(I) ∪ f(j) \ f(i)) + ν(f(J) ∪ f(i) \ f(j)). (3.6)

If f(i) ∈ f(J), then there exists j ∈ J such that f(i) = f(j). Therefore, we have the
equality in (3.6). In any case, we get the inequality (3.6), which, from the definition of
f−1(ν), is exactly (3.5).

Definition 3.3.19. Let f : [m] → [n] be a map of sets and let ν be a valuated matroid
on the ground set [n]. The induced valuated matroid is defined by f−1(ν) = f−1(ν|f([m])).

Definition 3.3.20. Let µ and ν be valuated matroids on the ground set [m] and [n]

respectively. A map of sets f : [m] ∪ {o} → [n] ∪ {o} with f(o) = o is a morphisms of
valuated matroids, denoted f : µ→ ν, if f−1(νo) ↞ µo.

In our context, it suffices to restrict to projections. Let µ and ν be two valuated
matroids on the common ground set [n], and let S ⊆ [n]. Define the projection map
prS : [n] ∪ {o} → [n] ∪ {o} by

prS(x) =

x if x /∈ S,

o if x ∈ S.
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Using this definition, we prove the final part of Theorem A, (b) ⇔ (d).

Proposition 3.3.21. Let µ and ν be two valuated matroids on the common ground set
[n], and let S ⊆ [n]. Then, prS : ν → µ is a morphism of valuated matroids if and only
if µS ↞ ν.

Proof. Recall the definition of µS from (3.2). By construction, we have pr−1
S (µo) = (µo)S.

Thus prS : ν → µ is a morphism of valuated matroids if and only if (µo)S ↞ νo if and
only if µS ↞ ν.

Note that any linear map realizing the morphism prS : ν → µ, after a change of
coordinates, is always a projection. This follows directly from the definition of a realizable
morphism of matroids, that can be found in [38, Section 2]. This fact, together with the
above proposition, prove (b) ⇔ (d) of Theorem B.

3.4 The poset of linear degenerate flag varieties

Linear degenerate flag varieties can be arranged in a poset in a natural way as follows.
Fix n, k ∈ N and a sequence r = (r1, . . . , rk) of nonnegative integers such that we have
r1 ≤ · · · ≤ rk ≤ n. Define the set of linear degenerate flag varieties

L =

{
LFl(r,S;n) : S = (S1, . . . , Sk−1) with Si ⊆ [n]

}
.

We can give an order relation ⪯ on L defined by LFl(r,S;n) ⪯ LFl(r,S′;n) if and only
if Si ⊆ S ′

i for every i ∈ {1, . . . , k}, where S′ = (S ′
1, . . . , S

′
k−1). Note that (L,⪯) is a finite

lattice isomorphic to the product of lattices
∏k

i=1 2
[n], where 2[n] is the power set of [n]

ordered by set inclusion.
The maximum of L is the linear degenerate flag variety with Si = [n] for every i,

in other words at each step of the flag we are projecting all the coordinates, so the linear
spaces of the flag do not have any relation to each other, and the variety we obtain is
just a product of Grassmannians:

LFl(r, ([n], . . . , [n]);n) = G(r1;n)× · · · ×G(rk;n).

On the other hand, the minimum of L is the linear degenerate flag variety with Si = ∅
for every i. Here, we are not degenerating the flag variety as at each step the projection
is an identity map, thus all linear degenerate flags are flags:

LFl(r, (∅, . . . , ∅);n) = Fl(r;n).
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Analogously, we can arrange linear degenerate tropical flag varieties, and linear
degenerate flag Dressians in lattices isomorphic to

∏k
i=1 2

[n].

Linear degenerate tropical flag varieties with n = 4 Now, we want to take a closer
look at the lattice of linear degenerate tropical flag varieties for the case n = 4.

We used Macaulay2 [58] to compute the linear degenerate Plücker relations, using
code available in the Github repository [16]; and used the package Tropical.m2 [4] to
compute the respective linear degenerate tropical flag varieties. We did some additional
computations in gfan [68] and Oscar [92].

For the rest of this section, we will consider varieties of complete flags in C4.
More precisely, we fix r = (1, 2, 3), and omit r in our notation. For instance, we denote
Fl(4) := Fl(r; 4) and LFl

(
({1}, ∅); 4

)
:= LFl

(
r, ({1}, ∅); 4

)
. To simplify the notation, we

will use LFl(S1, S2; 4) in place of LFl((S1, S2); 4).

Example 3.4.1. The tropicalization trop(Fl(4)) of the flag variety Fl(4) is a nine-dimensional
simplicial fan in R14 with f-vector (1, 20, 79, 78) after quotienting out by the lineality
space, and lineality dimension six. This variety was computed in [18, Theorem 4], and it
parametrizes full flags of length 4, that is, a point inside a tropical line inside a tropical
plane. A picture of a point of trop(Fl4), i.e. a full flag of length 4, was given in Figure
3.1(a). In addition, as explained in [67, Paragraph 3.3.3], after quotienting out by the
lineality space, trop(Fl(4)) can be seen as a “tropical line bundle" over the Petersen graph,
parametrizing tropical flags. We give [67, Figure 9] in Figure 3.3. By [19, Theorem 5.2.1],
all tropical flags of length 4 are realizable, i.e. trop(Fl(4)) = FlDr(4). Concretely, a point
p in trop(Fl(4)) can be interpreted in the following way. The edge on the Petersen graph
that p lies on indicates which green or blue rays in the subdivision of the tropical plane
of Figure 3.1 contain the vertices of the tropical line. For instance, the tropical flag in
Figure 3.1(a) corresponds to a point on the edge connecting 12 and 34. There are two
different types of rays on this Petersen graph - the rays connecting (ab) to (cd) for some
a, b, c, d ∈ {1, 2, 3, 4} and the rays connecting (a) to (ab). The corresponding rays in the
tropical plane are arranged differently: the rays (ab) and (cd) in the tropical plane span
a one-dimensional space, and the rays (a) to (ab) span a two-dimensional cone. This dif-
ference is also reflected in their tropical line bundles, see Figure 3.3. Finally, the location
on the line bundle indicates where the point of the tropical flag lies on the line. ♢

Example 3.4.2. Now, we want to consider the linear degenerate tropical flag varieties
trop(LFl({1}, ∅; 4)) and trop(LFl(∅, {1}; 4)). The tropical variety trop(LFl({1}, ∅; 4))
parametrizes (realizable) tropical flags consisting of a point whose projection with re-
spect to the first coordinate lies on a tropical line that is contained in a tropical plane.
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Figure 3.3: The tropical flag variety trop(Fl4) quotient by its lineality space, interpreted
as a “tropical line bundle" over the Petersen graph, see also [67, Figure 9]

This setting was depicted in Figure 3.1 (b). Similarly, trop(LFl(∅, {1}; 4)) parametrizes
(realizable) tropical flags consisting of a point contained in a tropical line whose projection
with respect to the first coordinate is contained in a tropical plane.

The two different types of linear degenerate flags described above are dual to each
other, in fact LFl({1}, ∅; 4) ≃ LFl(∅, {1}; 4). Their tropicalizations trop(LFl({1}, ∅; 4))
and trop(LFl(∅, {1}; 4)) have a similar structure, they both are nine-dimensional simpli-
cial fans in R14 with lineality dimension seven. After quotienting by the lineality space,
we get a fan over the Petersen graph which has f-vector (1, 10, 15). The tropical varieties
are “usual line bundles" (as opposed to the “tropical line bundles" in Example 3.4.1) over
the Petersen graph. In Figure 3.4, we depict this degeneration. Further, we depict the
degeneration of the line bundles over the edges on the right of Figure 3.3. ♢

Example 3.4.3. Finally, we consider the linear degenerate tropical flag variety given by
trop(LFl({1}, {1}; 4)). It is a nine-dimensional simplicial fan in R14 with f-vector (1, 3)

after quotienting out by the lineality space, and lineality dimension eight, i.e. an eight-
dimensional “line bundle" over a tropical line. We depict it in Figure 3.5. Only the left
line component of the previous Figures 3.3 and 3.4 appears as a top-dimensional cell, only
the line bundles over the blue lines survive the degeneration, whereas the line bundles
over all black lines in the Petersen graph degenerate into the lineality space. ♢

One possible application of the poset of linear degenerate tropical flag varieties
would be to reduce the problem of computing a tropical flag variety to the problem of
computing (a product of) tropical Grassmannians. Recall that the tropical flag variety is
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Figure 3.4: The linear degenerate tropical flag variety trop(LFl(∅, {1}); 4) can be inter-
preted as a “line bundle" over the Petersen graph.

the minimum of the poset L of linear degenerate tropical flag varieties, while its maximum
is a product of tropical Grassmannians. Therefore, one could try to start from the top of
L, and, by descending the poset L step by step, reconstruct the structure of the tropical
flag variety. In order to do that, it would be enough to understand what happens at
the covers of the poset L, that is, to (fully or partially) reconstruct the structure of
trop(LFl(r,S;n)) from another linear degenerate tropical flag variety trop(LFl(r,S′;n))

that covers it, i.e. S is obtained from S′ by adding one element in one of the sets Si.

Question 3.4.4. Can we reconstruct the structure of trop(LFl(r,S;n)) from a cover?

The examples we have seen above already provide some insight into what the an-
swer is for full flags with n = 4. A common behaviour that we observe is that the lineality
space increases in dimension after each linear degeneration. The next result shows that,
for an ideal I ⊆ k[x0, . . . , xn], the lineality space of a tropical variety trop(V (I)) contains
the homogeneity space of I, which is the linear subspace of vectors v ∈ Rn+1 such that I
is homogeneous with respect to the grading deg(xi) = vi.

Lemma 3.4.5. Let I ⊆ k[x0, . . . , xn] be an ideal, where k is a field with the trivial
valuation. Let v = (v0, . . . , vn) ∈ Rn+1. If I is homogeneous with respect to the grading
deg(xi) = vi then v is in the lineality space of trop(V (I)).

Proof. If I is homogeneous with respect to the grading deg(xi) = vi, then inv(f) = f for
every f ∈ I. This implies that inv+w(f) = inw(f), as for every monomial m of f , we
are adding the same weight to the scalar product of the exponent vector of m and w.
In particular inw+v(I) = inw(I) for every w ∈ Rn. Hence w ∈ trop(V (I)) if and only if
w + v ∈ trop(V (I)), that is, v is in the lineality space of trop(V (I)).
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Figure 3.5: The linear degenerate tropical flag variety trop(LFl({1}, {1}); 4) can be in-
terpreted as a “line bundle" over the tropical line.

Corollary 3.4.6. The homogeneity space of a linear degenerate tropical flag variety is
contained in the homogeneity space of any one that covers it.

Proof. The claim follows from the structure of the linear degenerate Plücker relations. In
fact, fixed a grading of the Plücker variables, if the polynomials in Pr,s;S;n are homoge-
neous with respect to this grading, then this will be also the case for the polynomials in
Pr,s;S′;n for every S ′ ⊇ S.

By looking at the examples in the previous section, one might be tempted to
conjecture that a cover relation on the poset implies set inclusion on the tropical varieties.
In general, this is false, as the following example shows.

Example 3.4.7. In this example, we are going to show that

trop
(
LFl((1, 2), ∅; 4)

)
⊈ trop

(
LFl((1, 2), {1}; 4)

)
.

We already described the above tropical varieties in Example 3.2.10 and Example 3.3.6.
Now, assume that our base fieldK is the field of Laurent series K((t)), that is the quotient
field of the DVR K[[t]] of formal power series with coefficients in a field K in the variable
t. Then, K has valuation v : K → T where v(f(t)) is the minimum of the exponents
appearing in f .

Now let a, b ∈ Q with b > a > 0, and consider the two matrices

A1 =
(
1 1 1 1

)
, A2 =

(
1 1 1 1

ta 0 tb 1

)
.
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Let L1, L2 ⊆ K4 be the two linear spaces generated by the rows of the matrices A1 and A2

respectively. By construction, L1 ⊆ L2, but pr{1}(L1) ⊈ L2. We can see this through the
Plücker equations computed in Example 3.3.6. The valuations of the Plücker coordinates
of L1 and L2 are:

(p1, p2, p3, p4) = (0, 0, 0, 0),

(p1,2, p1,3, p1,4, p2,3, p2,4, p3,4) = (a, a, 0, b, 0, 0).

In particular, the minimum in all the tropical polynomials in Ptrop
2;4 and Ptrop

1,2;4 are achieved
at least twice, while the minimum in, for instance, the second tropical polynomial of
Ptrop

1,2;{1};4 listed in Example 3.3.6, p4p1,2 ⊕ p2p1,4 is not achieved twice:

p4p1,2 = 0⊙ a = a > 0 = 0⊙ 0 = p2p1,4. ♢

While we do not obtain containment on tropical flag varieties or Dressians in
the poset of linear degenerations, from the definition of the linear degenerate Plücker
relations, we obtain the following containment on some boundary components.

Corollary 3.4.8. Let LFlDr(r, r′, S ∪ {s}, n) ≺ LFlDr(r, r′, S, n) be a cover in the poset
of linear degenerate flag Dressians. Set

B =

{
(pI) ∈ T(

n
r) × T(

n
r′) : pI = ∞ for every I ∈

(
[n]

r

)
such that s ∈ I

}
.

Then we have
LFlDr(r, r′, S, n) ∩ B ⊆ LFlDr(r, r′, S ∪ {s}, n).

Another interesting application of the poset of linear degenerate flag varieties con-
cerns relative realizability. We say that two realizable tropical linear spaces T1 ⊆ T2 are
relatively realizable if there exist realizations L1 of T1 and L2 of T2 such that L1 ⊆ L2. Let
L be the poset of linear degenerate tropical flag varieties with flags of length 2 in P(Tn)
and rank vector (r, s). Then, accurately describing the cover relations of L might provide
us a way to solve the relative realizability problem. In fact, the maximal element of L
is trop(G(r;n))× trop(G(s;n)) in which we impose no conditions on either containment
or relative realizability, whereas the minimal element trop(Fl(r, s;n)) of L does. Thus,
if we could explicitly reconstruct trop(Fl(r, s;n)) from trop(G(r;n))× trop(G(s;n)), we
would have an explicit solution to the relative realizability problem by tracking elements
in the cover relations.
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