Set of independencies and Tutte polynomial of matroids over a domain

Alessio Borzi ${ }^{1}$ Ivan Martino ${ }^{2}$

${ }^{1}$ University of Warwick $\quad{ }^{2}$ KTH - Royal Institute of Technology

Matroids over a ring

Definition (Fink, Moci)

A matroid over a ring R on the ground set E is a function \mathcal{M} that assign to each subset A of E a finitely generated R-module $\mathcal{M}(A)$ in such a way that for every $b, c \in E \backslash A$, there exists $x, y \in \mathcal{M}(A)$ such that
$\mathcal{M}(A \cup\{b\}) \simeq \mathcal{M}(A) /(x)$
$\mathcal{M}(A \cup\{c\}) \simeq \mathcal{M}(A) /(y)$
$\mathcal{M}(A \cup\{b, c\}) \simeq \mathcal{M}(A) /(x, y)$
(note that the choice of x and y depends on both b and c).
The property required in the above definition is summarized by the following diagram:

$$
\begin{array}{cc}
\mathcal{M}(A) \xrightarrow{/(x)} & \mathcal{M}(A \cup\{a\}) \\
\downarrow /(y) & \downarrow /(\bar{y}) \\
\mathcal{M}(A \cup\{b\}) \xrightarrow{/(\bar{x})} & \mathcal{M}(A \cup\{a, b\})
\end{array}
$$

Example

Let $R=\mathbb{Z}[i], E=\{1,2\}$ and consider the matrix

$$
\left(v_{1}, v_{2}\right)=\left[\begin{array}{cc}
1 & 1+i \\
1+i & 0
\end{array}\right] \in R^{2,2}
$$

Now let $\psi: E \rightarrow R^{2}$ defined by $\psi(i)=v_{i}$, and define $\mathcal{M}: 2^{E} \rightarrow R$-mod by

$$
\mathcal{M}(A)=\frac{R^{2}}{\langle\psi(i): i \in A\rangle}, \quad \text { for every } A \subseteq E
$$

Thus \mathcal{M} is a realizable R-matroid and ψ is a realization.

The Grothendieck-Tutte polynomial

Let R be a domain, $Q(R)$ its field of fractions. Let $\mathbb{Z}[R$-mod $]$ be a ring freely generated as a group by isomorphism classes of f.g. R-modules $[N]$, with product given by $[N]\left[N^{\prime}\right]=\left[N \oplus N^{\prime}\right]$.
Denote by \vee the application of the contravariant functor $\operatorname{Hom}(-, Q(R) / R)$.

Definition

The Grothendieck-Tutte polynomial of a matroid \mathcal{M} over a domain R, of rank r on the ground set E is the polynomial:

$$
T_{\mathcal{M}}(x, y)=\sum_{A \subseteq[n]}\left[\operatorname{tor}(A)^{\vee}\right](x-1)^{r-\operatorname{rk}(A)}(y-1)^{|A|-\operatorname{rk}(A)} .
$$

Theorem (Deletion-Contraction)

Let \mathcal{M} be a matroid over a domain R, of rank r on the ground set E. If $\mathcal{M}(\emptyset)$ is torsion-free and $\mathcal{M}(E)=0$, then

$$
T_{\mathcal{M}}(x, y)= \begin{cases}y T_{\mathcal{M} \backslash i}(x, y) & \text { if } i \text { is a loop } \\ x T_{\mathcal{M} / i}(x, y) & \text { if } i \text { is a coloop, } \\ T_{\mathcal{M} \backslash i}(x, y)+T_{\mathcal{M} / i}(x, y) & \text { otherwise }\end{cases}
$$

The Poset of Torsions

Let \mathcal{M} be a realizable matroid over a domain with a fixed realization ψ. We can associate to \mathcal{M} a (classical) matroid in a natural way. We denote by $\Delta \mathcal{M}$ its independence complex.
Given $A \cup\{b\} \in \Delta \mathcal{M}$, from the definition of matroid over a ring, there is a quotient map $\mathcal{M}(A) \rightarrow \mathcal{M}(A \cup\{b\}) \simeq \mathcal{M}(A) /(\psi(b))$ that in a natural way give rise to a surjective map:

$$
\pi_{A, b}^{\vee}: \operatorname{tor}(A \cup\{b\})^{\vee} \rightarrow \operatorname{tor}(A)^{\vee}
$$

Definition

The poset of torsions of \mathcal{M} is the set

$$
\operatorname{Gr} \mathcal{M}=\left\{(A, l): A \in \Delta \mathcal{M}, l \in \operatorname{tor}(A)^{\vee}\right\}
$$

together with the partial order defined by the covering relations \triangleleft given as follows: if $(A \cup\{b\}, h),(A, l) \in \operatorname{Gr} \mathcal{M}$, then we set

$$
(A, l) \triangleleft(A \cup\{b\}, h) \stackrel{\text { def }}{\Longleftrightarrow} \pi_{A, b}^{\vee}(h)=l .
$$

Example

The poset of torsions $\operatorname{Gr} \mathcal{M}$ of the matroid \mathcal{M} of the previous example is:

$$
(\{1,2\},(0,0)) \quad(\{1,2\},(1,0)) \quad(\{1,2\},(0,1) \quad(\{1,2\},(1,1))
$$

$(\{1\}, \overline{0})$
$(\{2\}, \overline{0})$
$(\{2\}, \overline{1})$
(\emptyset, e)

Theorem

Let \mathcal{M} be a realizable matroid over a domain R, with a fixed realization. The poset of torsions $\operatorname{Gr} \mathcal{M}$ is a disjoint union of simplicial posets, each one isomorphic to link (\emptyset, e).

Specializations of the Grothendieck-Tutte polynomial

We can associate to a finite simplicial poset L a Stanley-Reisner ring (or face ring) A_{L} given by a quotient of $\mathbb{K}\left[x_{a}: a \in L\right]$ by some ideal I_{L} homogeneous with respect to the grading given by $\operatorname{deg}\left(x_{a}\right)=\operatorname{rk}(a)$.
Now let \mathbb{F} be a number field and let R be its ring of integers. We further assume that R is a PID. In these hypothesis, every f.g. torsion R-module N is finite, and $N \simeq N^{\vee}$.
Let \mathcal{M} be a realizable R-matroid with a fixed realization ψ. In this setting, the poset of torsions of \mathcal{M} is finite.

Definition

Denote by $L=\operatorname{link}(\emptyset, e)$, and let A_{L} be the face ring of L. The face module of \mathcal{M} is the
A_{L}-module

$$
A_{\mathcal{M}}=\bigoplus_{t \in \operatorname{tor}(\emptyset)} A_{L}
$$

Define $\varphi: \mathbb{Z}[R$-mod $] \rightarrow \mathbb{Z}$ by

$$
\begin{array}{lr}
\varphi([F])=1 & \text { for every free module } F, \\
\varphi([N])=|N| & \text { for every torsion module } N
\end{array}
$$

We can specialize the Grothendieck-Tutte polynomial, using the homomorphism φ, to obtain a formula for the Hilbert series of $A_{\mathcal{M}}$

Theorem

$$
H\left(A_{\mathcal{M}}, t\right)=\frac{t^{r}}{(1-t)^{r}} \varphi\left(T_{\mathcal{M}}(1 / t, 1)\right)
$$

Example

The face module of the matroid \mathcal{M} in the previous examples is:

$$
A_{\mathcal{M}} \simeq \frac{\mathbb{K}\left[x_{a}, x_{b_{0}}, x_{b_{1}}, x_{c_{0}}, x_{c_{1}}, x_{d_{0}}, x_{d_{1}}\right]}{\left(\begin{array}{ll}
x_{a} x_{b_{i}}-\left(x_{c_{i}}+x_{d_{i}}\right), x_{b_{0}} x_{b_{1}}, & i, j \in\{0,1\} \\
x_{c_{i}} x_{d_{j}}, x_{c_{0}} x_{c_{1}}, x_{d_{0}} x_{d_{1}}, & : \bar{i}=1-i
\end{array}\right)}
$$

In particular, we have:

$$
H\left(A_{\mathcal{M}}, t\right)=\frac{1+t+2 t^{2}}{(1-t)^{2}}=\frac{t^{2}}{(1-t)^{2}} \varphi\left(T_{\mathcal{M}}(1 / t, 1)\right)
$$

References

[^0]
[^0]: [1] Alessio Borzì and Ivan Martino. Set of independencies and tutte polynomial of matroids over a domain. artiv preprint
 arkiv:1909
 arxiv:1909.00332, 2019
 [2] Alex Fink and Luca Moci. Matroids over a ring. Journal of the European Mathematical Society, 18(4):681-731, 2016

