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Realizability of quotients of matroids

Matroid definition

Definition

A matroid M is a pair (E, I) where:
E is a set called ground set,

I is a family of subsets of E, called independent subsets, s.t.
1 ∅ ∈ I
2 A ⊆ B ∈ I ⇒ A ∈ I
3 A,B ∈ I, |A| < |B| ⇒ ∃b ∈ B \A : A ∪ {b} ∈ I.

If a matroid M arises from a set of vectors in a K-vector space, it
is realizable over K.
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Matroids from Graphs

Let G = (V,E) be a graph

G

I = {A ⊆ E : A is a subtree }

M(G) = (E, I) is a matroid, called the cycle matroid of G.
Matroids arising in this way are called graphic matroids.



Realizability of quotients of matroids

Matroids from Graphs

Let G = (V,E) be a graph

G

I = {A ⊆ E : A is a subtree }

M(G) = (E, I) is a matroid, called the cycle matroid of G.
Matroids arising in this way are called graphic matroids.



Realizability of quotients of matroids

Realizability

Graphic matroids are realizable over every field.

Not all matroids are realizable over every field!

Example

U2,4 = (E, I) where

E = {1, 2, 3, 4}
I = {A ⊆ E : |A| ≤ 2}

U2,4 is not realizable over the field with two elements Z2 = {0, 1}.[
1 0 1 1
0 1 1 x

]
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Non-Pappus matroid

Example (Non-Pappus matroid)

1
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7 8 9

P

Not realizable over any field.
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Deletion and Contraction

Let M = (E, I) be a matroid and let e ∈ E

Deletion M \ e: I(M \ e) = {I : I ∈ I, e /∈ I}

Contraction M/e: I(M/e) = {I \ e : I ∈ I, e ∈ I}

Both M \ e and M/e have ground set E \ e.
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Deletion and Contraction: realizable matroids

e

Deletion by e Contraction by e

1 0 0 1 1
0 1 0 1 2
0 0 1 1 3



0 0 1 1
1 0 1 2
0 1 1 3

 [
1 0 1 2
0 1 1 3

]
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Rank and flats

Let M be a matroid on E.

The rank r(A) of A ⊆ E is the cardinality of a maximal
independent set contained in A.

The rank of M is the rank of its ground set E.

F ⊆ E is a flat if r(F ∪ x) > r(F ) for all x ∈ E \ F .
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Matroid quotients

Definition

Let M and N be two matroids on the same ground set E. Then,
N is a matroid quotient of M if every flat of N is a flat of M .

M ↠ N
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Example of matroids quotient

e

Deletion by e Contraction by e
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Realizable matroid quotients

A matroid quotient M ↠ N is realizable over K if:

M is realized by V ⊆ Kn,

N is realized by U ⊆ Kn,

U ⊆ V .

N M

U V⊆
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Non realizable matroid quotient

1 2 3
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1 4 7 8 2,6 3,5

P/e

P \ e and P/e are realizable, but P \ e ↠ P/e is not



Realizability of quotients of matroids

Non realizable matroid quotient

1 2 3

4 5 6

7 8 e

P

1 2 3

4 5 6

7 8

P \ e

1 4 7 8 2,6 3,5

P/e

P \ e and P/e are realizable, but P \ e ↠ P/e is not



Realizability of quotients of matroids

Non realizable matroid quotient

1 2 3

4 5 6

7 8 e

P

1 2 3

4 5 6

7 8

P \ e

1 4 7 8 2,6 3,5

P/e

P \ e and P/e are realizable, but P \ e ↠ P/e is not



Realizability of quotients of matroids

Non realizable matroid quotient

1 2 3

4 5 6

7 8 e

P

1 2 3

4 5 6

7 8

P \ e

1 4 7 8 2,6 3,5

P/e

P \ e and P/e are realizable, but P \ e ↠ P/e is not



Realizability of quotients of matroids

Let M be a matroid on E. An extension of M is a matroid H on
E ∪ S such that M = H \ S.

Theorem (Higgs)

Every matroid quotient M ↠ N can be factored into an extension,
followed by a contraction:

H

M N

/S+S

A matroid H with the property above is a major of M ↠ N .

The major constructed in Higgs theorem is called Higgs major.
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Theorem (B. 2024)

Let K be an infinite field. TFAE:

1 M ↠ N is realizable over K,

2 the Higgs major H of M ↠ N is realizable over K.
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Tropical geometry

V (I) V (J)

−→

trop
(
V (I)

)
trop

(
V (J)

)
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Relative realizability problem

Y ⊆ X

Problem (Relative realizability problem in tropical geometry)

Given a pair of tropical varieties Y ⊆ X and an algebraic variety X
tropicalizing to X , does there exist a subvariety Y ⊆ X
tropicalizing to Y?

The answer might be negative even when X and Y are linear,
which is the case we will focus on.
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Tropical linear spaces

I ⊆ K[x0, . . . , xn] homogeneous linear ideal.

I1 is a K-vector space, with underlying matroid M(I1).

The tropical linear space trop(V (I)) depends just on M(I1).

Let trop(M) be the tropical linear space associated to M .
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Relative realizability for tropical linear spaces

Let X = trop(M1) and Y = trop(M2).

Proposition

trop(M2) ⊆ trop(M1) ⇐⇒ M1 ↠ M2

Proposition

TFAE:

Y ⊆ X is realizable over K,

M1 ↠ M2 is realizable over K.

Corollary

If K is infinite, TFAE:

Y ⊆ X is realizable over K,

the Higgs major H of M1 ↠ M2 is realizable over K.
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Lamboglia’s example

ℓ ⊈

L

trop(L)Γ ⊆

⊆ P5(C) plane

standard tropical planerealizable tropical line

No line ℓ tropicalizing to Γ is contained in L!
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Lamboglia’s example

M(L)M(ℓ)

H

L is a realization of M(L) that does not extend to H.
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Vita quieta,
mente lieta,
moderata dieta.

Quiet life,
happy mind,
moderate diet.

Thank you for your attention!
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