Tropical moduli spaces and toric embeddings

Alessio Borzì

University of Warwick

1 November 2021

 $\overline{M}_{0,n}$ seminar

$$M_{0,n} \to \overline{M}_{0,n}$$

as a tropical compactification

$$Y \subseteq T^n$$

$$Y \subseteq T^n \hookrightarrow X_{\Sigma}$$

$$Y\subseteq T^n\hookrightarrow X_{\Sigma}$$

Consider the closure \overline{Y} of Y inside X_{Σ} .

$$Y \subseteq T^n \hookrightarrow X_{\Sigma}$$

Consider the closure \overline{Y} of Y inside X_{Σ} .

Proposition

• \overline{Y} is complete \iff trop $(Y) \subseteq |\Sigma|$.

$$Y \subseteq T^n \hookrightarrow X_{\Sigma}$$

Consider the closure \overline{Y} of Y inside X_{Σ} .

Proposition

- \overline{Y} is complete \iff trop $(Y) \subseteq |\Sigma|$.

$$Y \cap \mathcal{O}_{\sigma}$$
 is pure of dimension $\dim(Y) - \dim(\sigma), \forall \sigma \in \Sigma$ \iff $\operatorname{trop}(Y) = |\Sigma|$

Tropical compactification

Definition (Tropical Compactification)

A tropical compactification of $Y \subseteq T^n$ is its closure \overline{Y} in a toric variety with X_{Σ} with $|\Sigma| = \operatorname{trop}(Y)$.

Three coordinate points: (0:0:1) (1:0:0) (0:1:0) The light blue part is T^2

$$X_{\Sigma} = \mathbb{P}^2 \setminus 3 \text{ points}$$

$$Y = V(x+y+1) \subseteq T^2$$

$$Y = V(x+y+1) \subseteq T^2$$

$$Y = V(x + y + 1) \subseteq T^2 \hookrightarrow \mathbb{P}^2 \setminus 3$$
 points

$$trop(Y) = |\Sigma|$$

$$Y = V(x+y+1) \subseteq T^2 \hookrightarrow \mathbb{P}^2 \setminus 3$$
 points

$$X_{\Sigma} = \mathbb{P}^2 \setminus 3 \text{ points}$$

$$Y = V(x + y + 1) \subseteq T^2 \hookrightarrow \mathbb{P}^2 \setminus 3$$
 points

$$Y \subseteq X_{\Sigma}$$

$$Y = V(x+y+1) \subseteq T^2 \hookrightarrow \mathbb{P}^2 \setminus 3$$
 points

$$\overline{Y} \subseteq X_{\Sigma}$$

$$Y = V(x+y) \subseteq T^2$$

$$Y = V(x+y) \subseteq T^2$$

$$Y = V(x+y) \subseteq T^2 \hookrightarrow \mathbb{P}^2 \setminus 3$$
 points

 $\operatorname{trop}(Y) \neq |\Sigma|$

$$Y = V(x+y) \subseteq T^2 \hookrightarrow \mathbb{P}^2 \setminus 3$$
 points

$$Y = V(x+y) \subseteq T^2 \hookrightarrow \mathbb{P}^2 \setminus 3$$
 points

$$\frac{\overline{Y}}{\overline{Y}} \subseteq X_{\Sigma}$$

$$\overline{Y} \simeq \mathbb{P}^1 \setminus \text{ point }$$

$$M_{0,n} = (\mathbb{P}^1 \setminus \{0,1,\infty\})^{n-3} \setminus \text{ diagonals}$$

$$M_{0,n} = (\mathbb{P}^1 \setminus \{0,1,\infty\})^{n-3} \setminus \text{ diagonals}$$

= $(\mathbb{C}^* \setminus \{1\})^{n-3} \setminus \text{ diagonals}$

$$M_{0,n} = (\mathbb{P}^1 \setminus \{0,1,\infty\})^{n-3} \setminus \text{diagonals}$$
$$= (\mathbb{C}^* \setminus \{1\})^{n-3} \setminus \text{diagonals}$$
$$= \mathbb{P}^{n-3} \setminus \{x_i = 0, x_i = x_j : 0 \le i, j \le n-3\}$$

$$M_{0,n} = (\mathbb{P}^1 \setminus \{0, 1, \infty\})^{n-3} \setminus \text{ diagonals}$$
$$= (\mathbb{C}^* \setminus \{1\})^{n-3} \setminus \text{ diagonals}$$
$$= \mathbb{P}^{n-3} \setminus \{x_i = 0, x_i = x_j : 0 \le i, j \le n-3\}$$

We have realized $M_{0,n}$ as the complement of $\binom{n-1}{2}$ hyperplanes, with equations given by the columns of the matrix:

This gives us a closed embedding

$$M_{0,n} \hookrightarrow T^{\binom{n-1}{2}-1}$$
 given by $x \mapsto B^T x$

This gives us a closed embedding

$$M_{0,n} \hookrightarrow T^{\binom{n-1}{2}-1}$$
 given by $x \mapsto B^T x$

Viewed inside $\mathbb{P}^{\binom{n-1}{2}-1}$ it is defined by the homogeneous ideal

$$I_{0,n} = \langle z_{ij} - z_{1j} + z_{1i} : 2 \le i, j \le n - 1 \rangle \subseteq \mathbb{C}[z_{ij}]$$

$\operatorname{trop}(M_{0,n})$ and phylogenetic trees

Let Δ be a fan with $|\Delta| = \operatorname{trop}(M_{0,n})$ with the coarser fan structure. This fan is the space of *phylogenetic trees*.

$\overline{\text{trop}(M_{0,n})}$ and phylogenetic trees

Let Δ be a fan with $|\Delta| = \operatorname{trop}(M_{0,n})$ with the coarser fan structure. This fan is the space of *phylogenetic trees*.

Definition

A phylogenetic tree is a tree with no vertices of degree 2.

Given a phylogenetic tree τ , assign to each edge e a length $l_e \in \mathbb{R}$.

Given a phylogenetic tree τ , assign to each edge e a length $l_e \in \mathbb{R}$. Let d_{ij} be the sum of the lengths of the edges in the unique path between the two leafs i to j.

Given a phylogenetic tree τ , assign to each edge e a length $l_e \in \mathbb{R}$. Let d_{ij} be the sum of the lengths of the edges in the unique path between the two leafs i to j.

Definition

The vector $(d_{ij}) \in \mathbb{R}^{\binom{n}{2}}$ is a **tree distance**. The **space of phylogenetic trees** is the set Δ of all tree distances.

For every leaf i, adding the vector $\sum_{j\neq i} e_{ij}$ to a tree distance (d_{ij}) corresponds to adding 1 to the length of the pendant edge containing i.

For every leaf i, adding the vector $\sum_{j\neq i} e_{ij}$ to a tree distance (d_{ij}) corresponds to adding 1 to the length of the pendant edge containing i. Therefore the lineality space Δ contains the n-dimensional subspace

$$L = \left\langle \sum_{j \neq i} e_{ij} : 1 \le i \le n \right\rangle \simeq \mathbb{R}^n.$$

For every leaf i, adding the vector $\sum_{j\neq i} e_{ij}$ to a tree distance (d_{ij}) corresponds to adding 1 to the length of the pendant edge containing i. Therefore the lineality space Δ contains the n-dimensional subspace

$$L = \left\langle \sum_{j \neq i} e_{ij} : 1 \le i \le n \right\rangle \simeq \mathbb{R}^n.$$

Therefore, we can view Δ as a subset of $\mathbb{R}^{\binom{n}{2}}/L \simeq \mathbb{R}^{\binom{n-1}{2}}$.

For every leaf i, adding the vector $\sum_{j\neq i} e_{ij}$ to a tree distance (d_{ij}) corresponds to adding 1 to the length of the pendant edge containing i. Therefore the lineality space Δ contains the n-dimensional subspace

$$L = \left\langle \sum_{j \neq i} e_{ij} : 1 \le i \le n \right\rangle \simeq \mathbb{R}^n.$$

Therefore, we can view Δ as a subset of $\mathbb{R}^{\binom{n}{2}}/L \simeq \mathbb{R}^{\binom{n-1}{2}}$. The combinatorial types of the phylogenetic trees give Δ the structure of a fan in a natural way.

Theorem

The closure of $M_{0,n}$ in the corresponding toric variety X_{Δ} is isomorphic to the Deligne-Mumford compactification $\overline{M}_{0,n}$.

Example: $M_{0,4}$

Let
$$n=4$$
 and consider $M_{0,4} \simeq \mathbb{P}^1 \setminus \{0,1,\infty\}$

$$B = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \end{bmatrix}$$

$$I_{0,4} = \langle -z_{12} + z_{13} + z_{23} \rangle$$

We can think it as being $M_{0,4} = V(x+y+1)$. The space Δ of phylogenetic trees is then the tropicalization of a general line:

Example: $M_{0,5}$

Let n = 5 and consider $M_{0,5}$

$$B = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{bmatrix}$$

Example: $M_{0,5}$

Let n = 5 and consider $M_{0,5}$

$$B = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 & -1 & -1 \end{bmatrix}$$

The equations of $M_{0,5}$ are given by the row of the kernel of B

$$\ker B = \begin{bmatrix} z_{12} & z_{13} & z_{14} & z_{23} & z_{24} & z_{34} \\ -1 & 1 & 0 & 1 & 0 & 0 \\ -1 & 0 & 1 & 0 & 1 & 0 \\ 0 & -1 & 1 & 0 & 0 & 1 \end{bmatrix}$$

$$I_{0,5} = \langle -z_{12} + z_{13} + z_{23}, -z_{12} + z_{14} + z_{24}, -z_{13} + z_{14} + z_{34} \rangle$$

The space of phylogenetic trees Δ is a fan of dimension 2 that can be thought as the cone over the *Petersen graph*:

Intersection theory of $\overline{M}_{0,n}$

Theorem

$$A^*(\overline{M}_{0,n}) \simeq A^*(X_{\Delta})$$

Intersection theory of $\overline{M}_{0,n}$

Theorem

$$A^*(\overline{M}_{0,n}) \simeq A^*(X_{\Delta})$$

Where $A^*(X_{\Delta})$ can be explicitly described as follows. Suppose Δ has s rays and let D_i be the divisor of X_{Δ} corresponding to the i-th ray.

Intersection theory of $\overline{M}_{0,n}$

Theorem

$$A^*(\overline{M}_{0,n}) \simeq A^*(X_{\Delta})$$

Where $A^*(X_{\Delta})$ can be explicitly described as follows. Suppose Δ has s rays and let D_i be the divisor of X_{Δ} corresponding to the i-th ray. Define

$$SR(\Delta) = \left\langle \prod_{i \in \sigma} D_i : \sigma \notin \Delta \right\rangle, \quad L_{\Delta} = \left\langle \sum_{j=1}^{s} V_{ij} D_j : 1 \le i \le n \right\rangle,$$

where $V = (V_{ij})$ is the matrix with columns the first lattice points of the rays of Δ . We have

$$A^*(X_{\Delta}) = \mathbb{Z}[D_1, \dots, D_s]/(\mathrm{SR}(\Delta) + L_{\Delta})$$

Thank you for your attention!

