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Let T™ = (C*)™ be the n-dimensional algebraic torus
Y € T" — Xy

Consider the closure Y of Y inside Xs.

Proposition
Q@ Y is complete <= trop(Y) C |X|.
Q IfY is complete, then

Y N O, is pure of dimension

Bl — b)), o e o reri =[P
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Tropical compactification

Definition (Tropical Compactification)

A tropical compactification of Y C T™ is its closure Y in a
toric variety with Xy, with |X| = trop(Y).
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Three coordinate points:
The light blue part is 7
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Example

Y=V(@z+y+1) CT?
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Y =V(z+y+1) CT?— P?\ 3 points
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Y =V(z+y+1) CT?— P?\ 3 points
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Xy, = P2\ 3 points
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Y =V(z+y+1) CT?— P2\ 3 points
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Example 2

Y =V(z+y) CT?




Example 2

Y =V(z+y) CT?

trop(Y)
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Example 2

Y =V(z+y) CT? — P2\ 3 points

\V/

trop(Y) # |X| ¥ € Xy

Y ~ P!\ point

Alessio Borzi Tropical moduli spaces and toric embeddings



Moy, = (Pl \ {0, 1, oo})"_3 \ diagonals
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Moy, = (Pl \ {0, 1, oo})"_3 \ diagonals
= (C*\ {1})" 3\ diagonals
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Moy, = (P'\ {0,1,00})" %\ diagonals
= (C*\ {1})" 3\ diagonals
:P”_g\{mizo,xi:a:j:ng‘,jgn—:%}
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My, = (P*\ {0,1,00})" 3\ diagonals
= (C*\ {1})" 3\ diagonals
:P”_3\{mi:0,xi:a:j:ng‘,jgn—ia}

We have realized My, as the complement of (";1) hyperplanes,
with equations given by the columns of the matrix:

1 0 00 1 1 .. 0
0100 -1 0 ... 1 1
B=/00120 0o -1 -1 0 c C(n72)’(n;1)
0 0 01 0 O 0 -1
— —

identity matrix columns given by e; — e;
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This gives us a closed embedding

My, — (")t given by x> BTz
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This gives us a closed embedding
("1 o T
Mo, — T\ 2 given by x+— B 'z
Viewed inside P("2 )1 it is defined by the homogeneous ideal

Inn=(zij— 215+ 21 : 2 <1, <n—1) CClz]
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trop(My,) and phylogenetic trees

Let A be a fan with |A| = trop(My ) with the coarser fan
structure. This fan is the space of phylogenetic trees.
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trop(My,) and phylogenetic trees

Let A be a fan with |A| = trop(Mjy,) with the coarser fan
structure. This fan is the space of phylogenetic trees.

Definition

A phylogenetic tree is a tree with no vertices of degree 2.

1
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Given a phylogenetic tree 7, assign to each edge e a length
le € R.
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Given a phylogenetic tree 7, assign to each edge e a length
le € R. Let d;; be the sum of the lengths of the edges in the
unique path between the two leafs i to j.
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Given a phylogenetic tree 7, assign to each edge e a length
le € R. Let d;; be the sum of the lengths of the edges in the
unique path between the two leafs i to j.

Definition

The vector (d;j) € R(2) is o tree distance. The space of
phylogenetic trees is the set A of all tree distances.
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For every leaf i, adding the vector > i €ij to a tree distance
(d;j) corresponds to adding 1 to the length of the pendant edge
containing 1.
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For every leaf i, adding the vector > i €ij to a tree distance
(d;j) corresponds to adding 1 to the length of the pendant edge
containing ¢. Therefore the lineality space A contains the
n-dimensional subspace

L_<Zeij:1§i§n>f:R”.

J#
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For every leaf i, adding the vector > i €ij to a tree distance
(d;j) corresponds to adding 1 to the length of the pendant edge
containing ¢. Therefore the lineality space A contains the
n-dimensional subspace

L_<Zeij:1§i§n>f:R”.

J#

Therefore, we can view A as a subset of R(g)/L ~R("2").

Alessio Borzi Tropical moduli spaces and toric embeddings



For every leaf i, adding the vector > i €ij to a tree distance
(d;j) corresponds to adding 1 to the length of the pendant edge
containing ¢. Therefore the lineality space A contains the
n-dimensional subspace

L= <Zeij:1§i§n>2R”.
J#i
n n—1
Therefore, we can view A as a subset of R(2)/L ~R("2"). The
combinatorial types of the phylogenetic trees give A the
structure of a fan in a natural way.
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Theorem

The closure of My, in the corresponding toric variety Xa is
isomorphic to the Deligne-Mumford compactification Mg, .
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Example: M4

Let n = 4 and consider My 4 ~ P!\ {0,1, 0}

10 1
B_[O 1 —1}

Ina = (—z12 + 213 + 223)
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We can think it as being M4 = V(z 4+ y + 1). The space A of
phylogenetic trees is then the tropicalization of a general line:
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Example: M5

Let n =5 and consider My 5

B:

S O =

00
10
01

1 1 0
-1 0 1
0o -1 -1
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Example: M5

Let n = 5 and consider My 5

100 1 1 0
B=]01 0 -1 0 1
001 0 -1 -1

The equations of My 5 are given by the row of the kernel of B

212 213 214 %23

294 234
1 1 0 1 0 0
kerB="1 1 g 1 0 1 o0
0 -1 1 0 0 1

Ins = (—z12 + 213 + 223, =212 + 214 + 204, —213 + 214 + 234)

Alessio Borzi
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The space of phylogenetic trees A is a fan of dimension 2 that
can be thought as the cone over the Petersen graph:
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Intersection theory of My,

Theorem

A*(Mon) = A*(Xa)
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Intersection theory of My,

Theorem

A*(Mon) = A*(Xa)

Where A*(Xa) can be explicitly described as follows. Suppose
A has s rays and let D; be the divisor of XA corresponding to
the ¢-th ray.
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Intersection theory of My,

Theorem

A*(Mon) = A*(Xa)

Where A*(Xa) can be explicitly described as follows. Suppose
A has s rays and let D; be the divisor of XA corresponding to
the i-th ray. Define

SR(A)—<HDZ-:U¢A>, LA—<ZV,-]-D]~:1SZ'§n>,
i€o j=1

where V' = (V};) is the matrix with columns the first lattice
points of the rays of A. We have

A*(Xa) =Z[Dx, ..., Ds]/(SR(A) + La)
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Thank you for your attention!
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