Realizability of quotients of matroids

Alessio Borzì
MPI MiS Leipzig
UP Math Seminar
Universiteti i Prishtinës

7 March 2024

$$
A=\left[\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] \in \mathbb{C}^{2,4}
$$

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] \in \mathbb{C}^{2,4}
$$

$$
U=\operatorname{rowspace}(A) \subseteq \mathbb{C}^{4}
$$

$$
\operatorname{dim} U=2
$$

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right] \in \mathbb{C}^{2,4}
$$

$$
U=\operatorname{rowspace}(A) \subseteq \mathbb{C}^{4}
$$

$$
\operatorname{dim} U=2
$$

$$
\begin{gathered}
E=\{1,2,3,4\} \\
\mathcal{I}=\{I \subseteq E: \text { the vectors in } I \text { are I.i. }\}
\end{gathered}
$$

Matroid definition

Definition

A matroid M is a pair (E, \mathcal{I}) where:

- E is a set called ground set,
- \mathcal{I} is a family of subsets of E, called independent subsets, s.t.
(1) $\emptyset \in \mathcal{I}$
(2) $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$
(3) $A, B \in \mathcal{I},|A|<|B| \Rightarrow \exists b \in B \backslash A: A \cup\{b\} \in \mathcal{I}$.

Matroid definition

Definition

A matroid M is a pair (E, \mathcal{I}) where:

- E is a set called ground set,
- \mathcal{I} is a family of subsets of E, called independent subsets, s.t.
(1) $\emptyset \in \mathcal{I}$
(2) $A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I}$
(3) $A, B \in \mathcal{I},|A|<|B| \Rightarrow \exists b \in B \backslash A: A \cup\{b\} \in \mathcal{I}$.

If a matroid M arises from a set of vectors in a K-vector space, it is realizable over K.

Non-Pappus matroid

Not all matroids are realizable!

Non-Pappus matroid

Not all matroids are realizable!

Example (Non-Pappus matroid)

Not realizable over any field.

Rank and flats

Let M be a matroid on E.

The rank $r(A)$ of $A \subseteq E$ is the cardinality of a maximal independent set contained in A.

Rank and flats

Let M be a matroid on E.

The rank $r(A)$ of $A \subseteq E$ is the cardinality of a maximal independent set contained in A.

The rank of M is the rank of its ground set E.

Rank and flats

Let M be a matroid on E.

The rank $r(A)$ of $A \subseteq E$ is the cardinality of a maximal independent set contained in A.

The rank of M is the rank of its ground set E.
$F \subseteq E$ is a flat if $r(F \cup x)>r(F)$ for all $x \in E \backslash F$.

Matroid quotients

Definition

Let M and N be two matroids on the same ground set E. Then, N is a matroid quotient of M if every flat of N is a flat of M.

$$
M \rightarrow N
$$

Realizable matroid quotients

A matroid quotient $M \rightarrow N$ is realizable over K if:

- M is realized by $V \subseteq K^{n}$,
- N is realized by $U \subseteq K^{n}$,
- $U \subseteq V$.

Deletion and Contraction

Let $M=(E, \mathcal{I})$ be a matroid and let $e \in E$

- Deletion $M \backslash e: \quad \mathcal{I}(M \backslash e)=\{I: I \in \mathcal{I}, e \notin I\}$
- Contraction $M / e: \quad \mathcal{I}(M / e)=\{I \backslash e: I \in \mathcal{I}, e \in I\}$

Both $M \backslash e$ and M / e have ground set $E \backslash e$.

Non realizable matroid quotient

Non realizable matroid quotient

P / e

Non realizable matroid quotient

$P \backslash e$ and P / e are realizable, but $P \backslash e \rightarrow P / e$ is not

Non realizable matroid quotient

$P \backslash e$ and P / e are realizable, but $P \backslash e \rightarrow P / e$ is not

Let M be a matroid on E. An extension of M is a matroid H on $E \cup S$ such that $M=H \backslash S$.

Let M be a matroid on E. An extension of M is a matroid H on $E \cup S$ such that $M=H \backslash S$.

Theorem (Higgs)

Every matroid quotient $M \rightarrow N$ can be factored into an extension, followed by a contraction:

Let M be a matroid on E. An extension of M is a matroid H on $E \cup S$ such that $M=H \backslash S$.

Theorem (Higgs)

Every matroid quotient $M \rightarrow N$ can be factored into an extension, followed by a contraction:

A matroid H with the property above is a major of $M \rightarrow N$.

The major constructed in Higgs theorem is called Higgs major.

Theorem (B. 2024)

Let K be an infinite field. TFAE:
(1) $M \rightarrow N$ is realizable over K,
(2) the Higgs major H of $M \rightarrow N$ is realizable over K.

Tropical geometry

Relative realizability problem

Problem (Relative realizability problem in tropical geometry)
Given a pair of tropical varieties $\mathcal{Y} \subseteq \mathcal{X}$ and an algebraic variety X tropicalizing to \mathcal{X}, does there exist a subvariety $Y \subseteq X$ tropicalizing to \mathcal{Y} ?

Relative realizability problem

Problem (Relative realizability problem in tropical geometry)
Given a pair of tropical varieties $\mathcal{Y} \subseteq \mathcal{X}$ and an algebraic variety X tropicalizing to \mathcal{X}, does there exist a subvariety $Y \subseteq X$ tropicalizing to \mathcal{Y} ?

The answer might be negative even when \mathcal{X} and \mathcal{Y} are linear, which is the case we will focus on.

Tropical linear spaces

$I \subseteq K\left[x_{0}, \ldots, x_{n}\right]$ homogeneous linear ideal.
I_{1} is a K-vector space, with underlying matroid $M\left(I_{1}\right)$.

Tropical linear spaces

$I \subseteq K\left[x_{0}, \ldots, x_{n}\right]$ homogeneous linear ideal.
I_{1} is a K-vector space, with underlying matroid $M\left(I_{1}\right)$.
The tropical linear space trop $(V(I))$ depends just on $M\left(I_{1}\right)$.

Let $\operatorname{trop}(M)$ be the tropical linear space associated to M.

Relative realizability for tropical linear spaces

Let $\mathcal{X}=\operatorname{trop}\left(M_{1}\right)$ and $\mathcal{Y}=\operatorname{trop}\left(M_{2}\right)$.

Relative realizability for tropical linear spaces

Let $\mathcal{X}=\operatorname{trop}\left(M_{1}\right)$ and $\mathcal{Y}=\operatorname{trop}\left(M_{2}\right)$.

Proposition

$\operatorname{trop}\left(M_{2}\right) \subseteq \operatorname{trop}\left(M_{1}\right) \Longleftrightarrow M_{1} \rightarrow M_{2}$

Relative realizability for tropical linear spaces

Let $\mathcal{X}=\operatorname{trop}\left(M_{1}\right)$ and $\mathcal{Y}=\operatorname{trop}\left(M_{2}\right)$.

Proposition

$\operatorname{trop}\left(M_{2}\right) \subseteq \operatorname{trop}\left(M_{1}\right) \Longleftrightarrow M_{1} \rightarrow M_{2}$

Proposition
TFAE:

- $\mathcal{Y} \subseteq \mathcal{X}$ is realizable over K,
- $M_{1} \rightarrow M_{2}$ is realizable over K.

Relative realizability for tropical linear spaces

Let $\mathcal{X}=\operatorname{trop}\left(M_{1}\right)$ and $\mathcal{Y}=\operatorname{trop}\left(M_{2}\right)$.

Proposition

$\operatorname{trop}\left(M_{2}\right) \subseteq \operatorname{trop}\left(M_{1}\right) \Longleftrightarrow M_{1} \rightarrow M_{2}$

Proposition

TFAE:

- $\mathcal{Y} \subseteq \mathcal{X}$ is realizable over K,
- $M_{1} \rightarrow M_{2}$ is realizable over K.

Corollary

If K is infinite, TFAE:

- $\mathcal{Y} \subseteq \mathcal{X}$ is realizable over K,
- the Higgs major H of $M_{1} \rightarrow M_{2}$ is realizable over K.

Lamboglia's example

$$
L \subseteq \mathbb{P}^{5}(\mathbb{C}) \text { plane }
$$

Lamboglia's example

standard tropical plane

Lamboglia's example

realizable tropical line

Lamboglia's example

No line ℓ tropicalizing to Γ is contained in L !

Lamboglia's example

$$
M(\ell) \longleftrightarrow \quad M(L)
$$

Lamboglia's example

Lamboglia's example

L is a realization of $M(L)$ that does not extend to H.

Thank you for your attention!

