Alessio Borzì

MPI MiS Leipzig

UP Math Seminar Universiteti i Prishtinës

7 March 2024

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} \in \mathbb{C}^{2,4}$$

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{bmatrix} \in \mathbb{C}^{2,4}$$

$$U = \operatorname{rowspace}(A) \subseteq \mathbb{C}^4$$

 $\dim U = 2$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

 $E = \{1, 2, 3, 4\}$ $\mathcal{I} = \{I \subseteq E : \text{ the vectors in } I \text{ are l.i. } \}$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Matroid definition

Definition

A matroid M is a pair (E, \mathcal{I}) where:

- E is a set called ground set,
- \mathcal{I} is a family of subsets of E, called independent subsets, s.t.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

$$\begin{array}{l} \bullet & \emptyset \in \mathcal{I} \\ \hline \bullet & A \subseteq B \in \mathcal{I} \Rightarrow A \in \mathcal{I} \\ \hline \bullet & A, B \in \mathcal{I}, \ |A| < |B| \Rightarrow \exists b \in B \setminus A : A \cup \{b\} \in \mathcal{I}. \end{array}$$

Matroid definition

Definition

A matroid M is a pair (E, \mathcal{I}) where:

- E is a set called ground set,
- \mathcal{I} is a family of subsets of E, called independent subsets, s.t.

If a matroid M arises from a set of vectors in a $K\mbox{-vector}$ space, it is realizable over K.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Non-Pappus matroid

Not all matroids are realizable!

Non-Pappus matroid

Not all matroids are realizable!

Rank and flats

Let M be a matroid on E.

The rank r(A) of $A \subseteq E$ is the cardinality of a maximal independent set contained in A.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Rank and flats

Let M be a matroid on E.

The rank r(A) of $A \subseteq E$ is the cardinality of a maximal independent set contained in A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The rank of M is the rank of its ground set E.

Rank and flats

Let M be a matroid on E.

The rank r(A) of $A \subseteq E$ is the cardinality of a maximal independent set contained in A.

The rank of M is the rank of its ground set E.

 $F \subseteq E$ is a flat if $r(F \cup x) > r(F)$ for all $x \in E \setminus F$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Matroid quotients

Definition

Let M and N be two matroids on the same ground set E. Then, N is a matroid quotient of M if every flat of N is a flat of M.

$M\twoheadrightarrow N$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへの

Realizable matroid quotients

A matroid quotient $M \twoheadrightarrow N$ is realizable over K if:

- M is realized by $V \subseteq K^n$,
- N is realized by $U \subseteq K^n$,
- $\bullet \ U \subseteq V.$

$$\begin{array}{cccc} N & \longleftarrow & M \\ & & & \\ & & & \\ U & \subseteq & V \end{array}$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Deletion and Contraction

Let $M = (E, \mathcal{I})$ be a matroid and let $e \in E$

- Deletion $M \setminus e$: $\mathcal{I}(M \setminus e) = \{I : I \in \mathcal{I}, e \notin I\}$
- Contraction M/e: $\mathcal{I}(M/e) = \{I \setminus e : I \in \mathcal{I}, e \in I\}$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Both $M \setminus e$ and M/e have ground set $E \setminus e$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Let M be a matroid on E. An extension of M is a matroid H on $E \cup S$ such that $M = H \setminus S$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let M be a matroid on E. An extension of M is a matroid H on $E \cup S$ such that $M = H \setminus S$.

Theorem (Higgs)

Every matroid quotient $M \twoheadrightarrow N$ can be factored into an extension, followed by a contraction:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let M be a matroid on E. An extension of M is a matroid H on $E \cup S$ such that $M = H \setminus S$.

Theorem (Higgs)

Every matroid quotient $M \twoheadrightarrow N$ can be factored into an extension, followed by a contraction:

A matroid H with the property above is a major of $M \twoheadrightarrow N$.

The major constructed in Higgs theorem is called Higgs major.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Theorem (B. 2024)

Let K be an infinite field. TFAE:

- $M \twoheadrightarrow N \text{ is realizable over } K,$
- **2** the Higgs major H of $M \rightarrow N$ is realizable over K.

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ ヨ のなべ

Tropical geometry

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Relative realizability problem

Problem (Relative realizability problem in tropical geometry)

Given a pair of tropical varieties $\mathcal{Y} \subseteq \mathcal{X}$ and an algebraic variety X tropicalizing to \mathcal{X} , does there exist a subvariety $Y \subseteq X$ tropicalizing to \mathcal{Y} ?

Relative realizability problem

Problem (Relative realizability problem in tropical geometry)

Given a pair of tropical varieties $\mathcal{Y} \subseteq \mathcal{X}$ and an algebraic variety X tropicalizing to \mathcal{X} , does there exist a subvariety $Y \subseteq X$ tropicalizing to \mathcal{Y} ?

The answer might be negative even when \mathcal{X} and \mathcal{Y} are linear, which is the case we will focus on.

Tropical linear spaces

 $I \subseteq K[x_0, \ldots, x_n]$ homogeneous linear ideal.

 I_1 is a K-vector space, with underlying matroid $M(I_1)$.

Tropical linear spaces

- $I \subseteq K[x_0, \ldots, x_n]$ homogeneous linear ideal.
- I_1 is a K-vector space, with underlying matroid $M(I_1)$.

The tropical linear space trop(V(I)) depends just on $M(I_1)$.

Let trop(M) be the tropical linear space associated to M.

Let $\mathcal{X} = \operatorname{trop}(M_1)$ and $\mathcal{Y} = \operatorname{trop}(M_2)$.

Let $\mathcal{X} = \operatorname{trop}(M_1)$ and $\mathcal{Y} = \operatorname{trop}(M_2)$.

Proposition

 $\operatorname{trop}(M_2) \subseteq \operatorname{trop}(M_1) \Longleftrightarrow M_1 \twoheadrightarrow M_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Let $\mathcal{X} = \operatorname{trop}(M_1)$ and $\mathcal{Y} = \operatorname{trop}(M_2)$.

Proposition

$$\operatorname{trop}(M_2) \subseteq \operatorname{trop}(M_1) \Longleftrightarrow M_1 \twoheadrightarrow M_2$$

Proposition

TFAE:

- $\mathcal{Y} \subseteq \mathcal{X}$ is realizable over K,
- $M_1 \twoheadrightarrow M_2$ is realizable over K.

Let $\mathcal{X} = \operatorname{trop}(M_1)$ and $\mathcal{Y} = \operatorname{trop}(M_2)$.

Proposition

$$\operatorname{trop}(M_2) \subseteq \operatorname{trop}(M_1) \Longleftrightarrow M_1 \twoheadrightarrow M_2$$

Proposition

TFAE:

- $\mathcal{Y} \subseteq \mathcal{X}$ is realizable over K,
- $M_1 \twoheadrightarrow M_2$ is realizable over K.

Corollary

If K is infinite, TFAE:

- $\mathcal{Y} \subseteq \mathcal{X}$ is realizable over K,
- the Higgs major H of $M_1 \twoheadrightarrow M_2$ is realizable over K.

Lamboglia's example

$L \subseteq \mathbb{P}^5(\mathbb{C})$ plane

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
Lamboglia's example
```


standard tropical plane

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

```
Lamboglia's example
```


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

realizable tropical line

```
Lamboglia's example
```


No line ℓ tropicalizing to Γ is contained in L!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Lamboglia's example

$M(\ell) \ll M(L)$

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Lamboglia's example

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Lamboglia's example

L is a realization of M(L) that does not extend to H.

Thank you for your attention!

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ