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Numerical semigroups

A numerical semigroup is a subset S ⊆ N such that

0 ∈ S;

a, b ∈ S ⇒ a+ b ∈ S;

N \ S is finite.

Equivalently: cofinite submonoid of (N,+).

Every numerical semigroup is finitely generated, and has a unique
minimal set of generators.

So every numerical semigroup is of the form S = 〈n1, . . . , ne〉 with
gcd(n1, . . . , ne) = 1.
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Semigroup polynomial

Definition

The semigroup polynomial of S is

PS(x) = 1 + (x− 1)
∑

g∈N\S

xg

Example

S = 〈3, 4〉

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

. . . . . .

−1 0 1 2 3 4 5 6

PS(x) =
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Semigroup polynomial

Definition

The semigroup polynomial of S is

PS(x) = 1 + (x− 1)
∑

g∈N\S
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S = 〈3, 4〉

↓ ↓

↓

↓ ↓ ↓ ↓ ↓ ↓

. . . . . .

−1 0 1 2 3 4 5 6
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Semigroup polynomial

Definition

The semigroup polynomial of S is

PS(x) = 1 + (x− 1)
∑

g∈N\S
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Example

S = 〈3, 4〉

↓ ↓ ↓ ↓

↓

↓ ↓ ↓ ↓

. . . . . .

−1 0 1 2 3 4 5 6

PS(x) = 1− x+ x3
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Semigroup polynomial

Definition

The semigroup polynomial of S is

PS(x) = 1 + (x− 1)
∑

g∈N\S

xg

Example

S = 〈3, 4〉

↓ ↓ ↓ ↓ ↓ ↓

↓

↓ ↓

. . . . . .

−1 0 1 2 3 4 5 6

PS(x) = 1− x+ x3 − x5
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Semigroup polynomial

Definition

The semigroup polynomial of S is

PS(x) = 1 + (x− 1)
∑

g∈N\S

xg

Example
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↓ ↓ ↓ ↓ ↓ ↓ ↓

↓

↓

. . . . . .

−1 0 1 2 3 4 5 6

PS(x) = 1− x+ x3 − x5 + x6
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PS(x) = 1 + (x− 1)
∑
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Symmetric numerical semigroups

F (S) = max(N \ S) is called Frobenius number.

Definition

A numerical semigroup S is symmetric if x ∈ S ⇔ F (S)− x /∈ S

Example

S = 〈3, 4〉

. . . . . .

−1 0 1 2 3 4 5 6

F (S)
2 = 2.5

F (S) = 5
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Symmetric numerical semigroups

Theorem

S is symmetric if and only if PS(x) is palindromic.

palindromic : PS(x) = xdPS(x
−1), d = degPS

i.e. the coefficients reads
the same forward or backward

Example

S = 〈3, 4〉
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Symmetric numerical semigroups

Theorem

S is symmetric if and only if PS(x) is palindromic.

palindromic : PS(x) = xdPS(x
−1), d = degPS

i.e. the coefficients reads
the same forward or backward

Example

S = 〈3, 4〉

PS(x) = 1x0 + (−1)x1 + 0x2 + 1x3 + 0x4 + (−1)x5 + 1x6
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Cyclotomic numerical semigroups

Definition

A polynomial f(x) is cyclotomic if it is an irreducible factor of
xn − 1 for some n > 0.

Definition

A numerical semigroup S is cyclotomic if PS(x) is a product of
cyclotomic polynomials.

Example

S = 〈3, 4〉

PS(x) = 1− x+ x3 − x5 + x6

=
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Cyclotomic numerical semigroups

Definition

A polynomial f(x) is cyclotomic if it is an irreducible factor of
xn − 1 for some n > 0.

Definition

A numerical semigroup S is cyclotomic if PS(x) is a product of
cyclotomic polynomials.

Example

S = 〈3, 4〉

PS(x) = 1− x+ x3 − x5 + x6

= (1− x+ x2) (1− x2 + x4)
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Cyclotomic numerical semigroups

Definition

A polynomial f(x) is cyclotomic if it is an irreducible factor of
xn − 1 for some n > 0.

Definition

A numerical semigroup S is cyclotomic if PS(x) is a product of
cyclotomic polynomials.

Example

S = 〈3, 4〉

PS(x) = 1− x+ x3 − x5 + x6

= (1− x+ x2)︸ ︷︷ ︸
divides x6 − 1

(1− x2 + x4)︸ ︷︷ ︸
divides x12 − 1
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Complete intersection numerical semigroups

Let S, S1, S2 be n. s. and let a1 ∈ S2 and a2 ∈ S1 such that they
are coprime and not minimal generators of their semigroups.

Definition

S is a gluing of S1 and S2 if S = a1S1 + a2S2.

Proposition

TFAE

S = a1S1 + a2S2,

PS(x) = P〈a1,a2〉(x)PS1(x
a1)PS2(x

a2).

Definition

S is a complete intersection if

S = N, or

S is the gluing of two complete intersection numerical
semigroups.
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Complete intersection numerical semigroups

Example

S = 〈3, 4〉 = 3N+ 4N

S = 〈6, 7, 8〉 = 7N+ 2〈3, 4〉
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complete
intersection

=⇒

?

cyclotomic

=⇒

6⇐=

symmetric

Herrera-Poyatos, Moree and independently Sawhney, Stoner:

Theorem

Sk = 〈k, k + 1, . . . , 2k − 2〉 is symmetric but not cyclotomic
for every k ≥ 5.

Conjecture (Ciolan, Garćıa-Sánchez, Moree 2016)

complete
intersection

⇐⇒ cyclotomic
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The conjecture is true for F (S) ≤ 70 by a computation check.

Theorem (Herzog 1969)

If e(S) ≤ 3 then S is symmetric iff it is a complete intersection.

As a corollary, the conjecture is true for e(S) ≤ 3.

Theorem (B., Herrera-Poyatos, Moree 2021)

If PS(x) has at most 2 irreducible factors then S is cyclotomic iff it
is a complete intersection.
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An algebraic point of view

S = 〈n1, . . . , ne〉,

k[S] = k[ts : s ∈ S]

' k[x1, . . . , xe]

I
graded by deg(xi) = ni.

H(k[S], x) =
K(k[S], x)

(1− xn1) . . . (1− xne)
=

PS(x)

(1− x)
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An algebraic point of view

R ' k[x1, . . . , xe]

I
graded by deg(xi) = ni ∈ N

H(R, x) =
K(R, x)

(1− xn1) . . . (1− xne)
=
NR(x)

DR(x)

Definition

A graded algebra R is cyclotomic if NR(x) is a product of
cyclotomic polynomials.
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Gorenstein algebras

Theorem (Kunz 1970)

k[S] is Gorenstein iff S is symmetric.

Theorem (Stanley 1978)

A Cohen-Macaulay graded domain R is Gorenstein iff NR(x) is
palindromic.

Corollary

If R is a cyclotomic Cohen-Macaulay graded domain then R is
Gorenstein.
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Complete intersections

Definition

A graded algebra R ' k[x1, . . . , xe]/I is a complete intersection
if I is generated by a regular sequence.

If R is a complete intersection, then

H(R, x) =
(1− xd1) . . . (1− xdm)
(1− xn1) . . . (1− xne)

=
NR(x)

DR(x)

Corollary

If R is a complete intersection, it is cyclotomic.
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Example (Stanley)

R = k[x, y]/(x3, xy, y2) with deg(x) = deg(y) = 1. We have

H(R, t) =
1− 2t2 + t4

(1− t)2
= (1 + t)2.

R is cyclotomic, but not a complete intersection.

Alessio Borz̀ı Cyclotomic Numerical Semigroups and Graded Algebras



(
Cohen-Macaulay

domains

)
complete
intersection

=⇒

6⇐=

cyclotomic =⇒

6⇐=

Gorenstein

Example (Stanley)

R = k[x, y]/(x3, xy, y2) with deg(x) = deg(y) = 1. We have

H(R, t) =
1− 2t2 + t4

(1− t)2
= (1 + t)2.

R is cyclotomic, but not a complete intersection.

Alessio Borz̀ı Cyclotomic Numerical Semigroups and Graded Algebras



(
Cohen-Macaulay

domains

)
complete
intersection

=⇒

6⇐=

cyclotomic =⇒
6⇐=

Gorenstein

Example (Stanley)

R = k[x, y]/(x3, xy, y2) with deg(x) = deg(y) = 1. We have

H(R, t) =
1− 2t2 + t4

(1− t)2
= (1 + t)2.

R is cyclotomic, but not a complete intersection.

Alessio Borz̀ı Cyclotomic Numerical Semigroups and Graded Algebras



(
Cohen-Macaulay

domains

)
complete
intersection

=⇒
6⇐=

cyclotomic =⇒
6⇐=

Gorenstein

Example (Stanley)

R = k[x, y]/(x3, xy, y2) with deg(x) = deg(y) = 1. We have

H(R, t) =
1− 2t2 + t4

(1− t)2
= (1 + t)2.

R is cyclotomic, but not a complete intersection.

Alessio Borz̀ı Cyclotomic Numerical Semigroups and Graded Algebras



Koszul algebras

Definition

A graded algebra R ' k[x1, . . . , xe]/I with deg(xi) = 1 is Koszul
if the minimal free resolution of k as an R-module is linear
(i.e. βRi,j(k) = 0 whenever i 6= j).

I has a Gröbner
basis of quadrics

=⇒ R is Koszul =⇒ I is generated
by quadrics

Theorem (B., D’Al̀ı 2021)

A Koszul algebra R is cyclotomic iff it is a complete intersection.
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Thank you for your attention!
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