Cyclotomic Numerical Semigroups and Graded Algebras

Alessio Borzì

Max Planck Institute for Mathematics in the Sciences, Leipzig
York Semigroup Seminar
25 October 2023

Part I: Cyclotomic Numerical Semigroups

 Part II: Algebraic point of view
Numerical semigroups

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- $0 \in S$;
- $a, b \in S \Rightarrow a+b \in S$;
- $\mathbb{N} \backslash S$ is finite.

Numerical semigroups

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- $0 \in S$;
- $a, b \in S \Rightarrow a+b \in S$;
- $\mathbb{N} \backslash S$ is finite.

Equivalently: cofinite submonoid of $(\mathbb{N},+)$.

Numerical semigroups

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- $0 \in S$;
- $a, b \in S \Rightarrow a+b \in S$;
- $\mathbb{N} \backslash S$ is finite.

Equivalently: cofinite submonoid of $(\mathbb{N},+)$.

Every numerical semigroup is finitely generated, and has a unique minimal set of generators.

Numerical semigroups

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that

- $0 \in S$;
- $a, b \in S \Rightarrow a+b \in S$;
- $\mathbb{N} \backslash S$ is finite.

Equivalently: cofinite submonoid of $(\mathbb{N},+)$.
Every numerical semigroup is finitely generated, and has a unique minimal set of generators.

So every numerical semigroup is of the form $S=\left\langle n_{1}, \ldots, n_{e}\right\rangle$ with $\operatorname{gcd}\left(n_{1}, \ldots, n_{e}\right)=1$.

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \cdots \\
& \begin{array}{llllllll}
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array}
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \cdot \\
& \begin{array}{llllllll}
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \cdot \cdots \\
& -1 \quad 0 \quad 1 \begin{array}{llllll}
-1 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=1
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \cdot \cdots \\
& -1 \quad 0 \quad 1 \begin{array}{llllll}
-1 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=1-x
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S_{\downarrow}=\langle 3,4\rangle \\
& \cdots \bigcirc \\
& \begin{array}{llllllll}
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=1-x
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \\
& \begin{array}{llllllll}
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=1-x+x^{3}
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \\
& -1 \quad 0 \quad 1 \begin{array}{llllll}
-1 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=1-x+x^{3}
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \\
& \begin{array}{llllllll}
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=1-x+x^{3}-x^{5}
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \cdots \\
& -1 \quad 0 \quad 1 \begin{array}{llllll}
-1 & 3 & 4 & 5 & 6
\end{array} \\
& P_{S}(x)=1-x+x^{3}-x^{5}+x^{6}
\end{aligned}
$$

Semigroup polynomial

Definition

The semigroup polynomial of S is

$$
P_{S}(x)=1+(x-1) \sum_{g \in \mathbb{N} \backslash S} x^{g}
$$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \cdot \\
& -1 \quad 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \\
& P_{S}(x)=1-x+x^{3}-x^{5}+x^{6}
\end{aligned}
$$

Symmetric numerical semigroups

$F(S)=\max (\mathbb{N} \backslash S)$ is called Frobenius number.

Symmetric numerical semigroups

$F(S)=\max (\mathbb{N} \backslash S)$ is called Frobenius number.

Definition

A numerical semigroup S is symmetric if $x \in S \Leftrightarrow F(S)-x \notin S$

Symmetric numerical semigroups

$F(S)=\max (\mathbb{N} \backslash S)$ is called Frobenius number.

Definition

A numerical semigroup S is symmetric if $x \in S \Leftrightarrow F(S)-x \notin S$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \\
& \begin{array}{llllllll}
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& F(S)=5
\end{aligned}
$$

Symmetric numerical semigroups

$F(S)=\max (\mathbb{N} \backslash S)$ is called Frobenius number.

Definition

A numerical semigroup S is symmetric if $x \in S \Leftrightarrow F(S)-x \notin S$

Example

$$
\begin{aligned}
& S=\langle 3,4\rangle \\
& \cdots \bigcirc \cdot \cdots \\
& \begin{array}{llll|llll}
-1 & 0 & 1 & 2 & 3 & 4 & 5 & 6
\end{array} \\
& \frac{F(S)}{2}=2.5 \\
& F(S)=5
\end{aligned}
$$

Symmetric numerical semigroups

Theorem
 S is symmetric if and only if $P_{S}(x)$ is palindromic.

Symmetric numerical semigroups

Theorem

S is symmetric if and only if $P_{S}(x)$ is palindromic.

$$
\begin{aligned}
\text { palindromic : } & P_{S}(x)=x^{d} P_{S}\left(x^{-1}\right), \quad d=\operatorname{deg} P_{S} \\
& \text { i.e. the coefficients reads } \\
& \text { the same forward or backward }
\end{aligned}
$$

Symmetric numerical semigroups

Theorem

S is symmetric if and only if $P_{S}(x)$ is palindromic.

$$
\text { palindromic : } P_{S}(x)=x^{d} P_{S}\left(x^{-1}\right), \quad d=\operatorname{deg} P_{S}
$$

i.e. the coefficients reads
the same forward or backward

Example

$$
S=\langle 3,4\rangle
$$

Symmetric numerical semigroups

Theorem

S is symmetric if and only if $P_{S}(x)$ is palindromic.

$$
\text { palindromic : } P_{S}(x)=x^{d} P_{S}\left(x^{-1}\right), \quad d=\operatorname{deg} P_{S}
$$

i.e. the coefficients reads
the same forward or backward

Example

$$
\begin{gathered}
S=\langle 3,4\rangle \\
P_{S}(x)=1-x+x^{3}-x^{5}+x^{6}
\end{gathered}
$$

Symmetric numerical semigroups

Theorem

S is symmetric if and only if $P_{S}(x)$ is palindromic.

$$
\text { palindromic : } P_{S}(x)=x^{d} P_{S}\left(x^{-1}\right), \quad d=\operatorname{deg} P_{S}
$$

i.e. the coefficients reads
the same forward or backward

Example

$$
\begin{gathered}
S=\langle 3,4\rangle \\
P_{S}(x)=1 x^{0}+(-1) x^{1}+0 x^{2}+1 x^{3}+0 x^{4}+(-1) x^{5}+1 x^{6}
\end{gathered}
$$

Cyclotomic numerical semigroups

Definition

A polynomial $f(x)$ is cyclotomic if it is an irreducible factor of $x^{n}-1$ for some $n>0$.

Cyclotomic numerical semigroups

Definition

A polynomial $f(x)$ is cyclotomic if it is an irreducible factor of $x^{n}-1$ for some $n>0$.

Definition

A numerical semigroup S is cyclotomic if $P_{S}(x)$ is a product of cyclotomic polynomials.

Cyclotomic numerical semigroups

Definition

A polynomial $f(x)$ is cyclotomic if it is an irreducible factor of $x^{n}-1$ for some $n>0$.

Definition

A numerical semigroup S is cyclotomic if $P_{S}(x)$ is a product of cyclotomic polynomials.

Example

$$
\begin{gathered}
S=\langle 3,4\rangle \\
P_{S}(x)=1-x+x^{3}-x^{5}+x^{6}
\end{gathered}
$$

Cyclotomic numerical semigroups

Definition

A polynomial $f(x)$ is cyclotomic if it is an irreducible factor of $x^{n}-1$ for some $n>0$.

Definition

A numerical semigroup S is cyclotomic if $P_{S}(x)$ is a product of cyclotomic polynomials.

Example

$$
\begin{gathered}
S=\langle 3,4\rangle \\
P_{S}(x)=1-x+x^{3}-x^{5}+x^{6} \\
=\left(1-x+x^{2}\right)\left(1-x^{2}+x^{4}\right)
\end{gathered}
$$

Cyclotomic numerical semigroups

Definition

A polynomial $f(x)$ is cyclotomic if it is an irreducible factor of $x^{n}-1$ for some $n>0$.

Definition

A numerical semigroup S is cyclotomic if $P_{S}(x)$ is a product of cyclotomic polynomials.

Example

$$
\begin{gathered}
\quad S=\langle 3,4\rangle \\
P_{S}(x)= \\
=\underbrace{\left(1-x+x^{2}\right)}_{\text {divides } x^{6}-1} \underbrace{\left(1-x^{2}+x^{4}\right)}_{\text {divides } x^{12}-1}
\end{gathered}
$$

Complete intersection numerical semigroups

Let S, S_{1}, S_{2} be n. s. and let $a_{1} \in S_{2}$ and $a_{2} \in S_{1}$ such that they are coprime and not minimal generators of their semigroups.

Complete intersection numerical semigroups

Let S, S_{1}, S_{2} be n. s. and let $a_{1} \in S_{2}$ and $a_{2} \in S_{1}$ such that they are coprime and not minimal generators of their semigroups.

Definition

S is a gluing of S_{1} and S_{2} if $S=a_{1} S_{1}+a_{2} S_{2}$.

Complete intersection numerical semigroups

Let S, S_{1}, S_{2} be n. s. and let $a_{1} \in S_{2}$ and $a_{2} \in S_{1}$ such that they are coprime and not minimal generators of their semigroups.

Definition

S is a gluing of S_{1} and S_{2} if $S=a_{1} S_{1}+a_{2} S_{2}$.

Proposition

TFAE

- $S=a_{1} S_{1}+a_{2} S_{2}$,
- $P_{S}(x)=P_{\left\langle a_{1}, a_{2}\right\rangle}(x) P_{S_{1}}\left(x^{a_{1}}\right) P_{S_{2}}\left(x^{a_{2}}\right)$.

Complete intersection numerical semigroups

Let S, S_{1}, S_{2} be n. s. and let $a_{1} \in S_{2}$ and $a_{2} \in S_{1}$ such that they are coprime and not minimal generators of their semigroups.

Definition

S is a gluing of S_{1} and S_{2} if $S=a_{1} S_{1}+a_{2} S_{2}$.

Proposition

TFAE

- $S=a_{1} S_{1}+a_{2} S_{2}$,
- $P_{S}(x)=P_{\left\langle a_{1}, a_{2}\right\rangle}(x) P_{S_{1}}\left(x^{a_{1}}\right) P_{S_{2}}\left(x^{a_{2}}\right)$.

Definition

S is a complete intersection if

- $S=\mathbb{N}$, or
- S is the gluing of two complete intersection numerical semigroups.

Complete intersection numerical semigroups

Example

$$
\begin{gathered}
S=\langle 3,4\rangle=3 \mathbb{N}+4 \mathbb{N} \\
S=\langle 6,7,8\rangle=7 \mathbb{N}+2\langle 3,4\rangle
\end{gathered}
$$

complete intersection

cyclotomic

symmetric

complete intersection
 \Longrightarrow cyclotomic \Longrightarrow symmetric

complete intersection
 \Longrightarrow cyclotomic \Longrightarrow symmetric

Herrera-Poyatos, Moree and independently Sawhney, Stoner:

Theorem

$S_{k}=\langle k, k+1, \ldots, 2 k-2\rangle$ is symmetric but not cyclotomic for every $k \geq 5$.

complete intersection
 \Longrightarrow cyclotomic \Longrightarrow symmetric ?

Herrera-Poyatos, Moree and independently Sawhney, Stoner:

Theorem

$S_{k}=\langle k, k+1, \ldots, 2 k-2\rangle$ is symmetric but not cyclotomic for every $k \geq 5$.

Conjecture (Ciolan, García-Sánchez, Moree 2016)
complete intersection

The conjecture is true for $F(S) \leq 70$ by a computation check.

The conjecture is true for $F(S) \leq 70$ by a computation check.

Theorem (Herzog 1969)

If $e(S) \leq 3$ then S is symmetric iff it is a complete intersection.
As a corollary, the conjecture is true for $e(S) \leq 3$.

The conjecture is true for $F(S) \leq 70$ by a computation check.

Theorem (Herzog 1969)

If $e(S) \leq 3$ then S is symmetric iff it is a complete intersection.
As a corollary, the conjecture is true for $e(S) \leq 3$.

Theorem (B., Herrera-Poyatos, Moree 2021)

If $P_{S}(x)$ has at most 2 irreducible factors then S is cyclotomic iff it is a complete intersection.

An algebraic point of view

$$
\begin{aligned}
& S=\left\langle n_{1}, \ldots, n_{e}\right\rangle, \\
& k[S]=k\left[t^{s}: s \in S\right]
\end{aligned}
$$

An algebraic point of view

$$
\begin{aligned}
& S=\left\langle n_{1}, \ldots, n_{e}\right\rangle, \\
& k[S]=k\left[t^{s}: s \in S\right] \simeq \frac{k\left[x_{1}, \ldots, x_{e}\right]}{I} \text { graded by } \operatorname{deg}\left(x_{i}\right)=n_{i} .
\end{aligned}
$$

An algebraic point of view

$$
\begin{aligned}
& S=\left\langle n_{1}, \ldots, n_{e}\right\rangle, \\
& k[S]=k\left[t^{s}: s \in S\right] \simeq \frac{k\left[x_{1}, \ldots, x_{e}\right]}{I} \text { graded by } \operatorname{deg}\left(x_{i}\right)=n_{i} . \\
& H(k[S], x)=\frac{\mathcal{K}(k[S], x)}{\left(1-x^{n_{1}}\right) \ldots\left(1-x^{n_{e}}\right)}
\end{aligned}
$$

An algebraic point of view

$$
\begin{aligned}
& S=\left\langle n_{1}, \ldots, n_{e}\right\rangle, \\
& k[S]=k\left[t^{s}: s \in S\right] \simeq \frac{k\left[x_{1}, \ldots, x_{e}\right]}{I} \text { graded by } \operatorname{deg}\left(x_{i}\right)=n_{i} . \\
& H(k[S], x)=\frac{\mathcal{K}(k[S], x)}{\left(1-x^{n_{1}}\right) \ldots\left(1-x^{n_{e}}\right)}=\frac{P_{S}(x)}{(1-x)}
\end{aligned}
$$

An algebraic point of view

$$
R \simeq \frac{k\left[x_{1}, \ldots, x_{e}\right]}{I} \text { graded by } \operatorname{deg}\left(x_{i}\right)=n_{i} \in \mathbb{N}
$$

An algebraic point of view

$$
\begin{aligned}
& R \simeq \frac{k\left[x_{1}, \ldots, x_{e}\right]}{I} \text { graded by } \operatorname{deg}\left(x_{i}\right)=n_{i} \in \mathbb{N} \\
& H(R, x)=\frac{\mathcal{K}(R, x)}{\left(1-x^{n_{1}}\right) \ldots\left(1-x^{n_{e}}\right)}
\end{aligned}
$$

An algebraic point of view

$$
\begin{aligned}
& R \simeq \frac{k\left[x_{1}, \ldots, x_{e}\right]}{I} \text { graded by } \operatorname{deg}\left(x_{i}\right)=n_{i} \in \mathbb{N} \\
& H(R, x)=\frac{\mathcal{K}(R, x)}{\left(1-x^{n_{1}}\right) \ldots\left(1-x^{n_{e}}\right)}=\frac{N_{R}(x)}{D_{R}(x)}
\end{aligned}
$$

An algebraic point of view

$$
\begin{aligned}
& R \simeq \frac{k\left[x_{1}, \ldots, x_{e}\right]}{I} \text { graded by } \operatorname{deg}\left(x_{i}\right)=n_{i} \in \mathbb{N} \\
& H(R, x)=\frac{\mathcal{K}(R, x)}{\left(1-x^{n_{1}}\right) \ldots\left(1-x^{n_{e}}\right)}=\frac{N_{R}(x)}{D_{R}(x)}
\end{aligned}
$$

Definition

A graded algebra R is cyclotomic if $N_{R}(x)$ is a product of cyclotomic polynomials.

Gorenstein algebras

Theorem (Kunz 1970)
$k[S]$ is Gorenstein iff S is symmetric.

Gorenstein algebras

Theorem (Kunz 1970)
$k[S]$ is Gorenstein iff $P_{S}(x)$ is palindromic.

Gorenstein algebras

Theorem (Kunz 1970)

$k[S]$ is Gorenstein iff $P_{S}(x)$ is palindromic.

Theorem (Stanley 1978)

A Cohen-Macaulay graded domain R is Gorenstein iff $N_{R}(x)$ is palindromic.

Gorenstein algebras

Theorem (Kunz 1970)

$k[S]$ is Gorenstein iff $P_{S}(x)$ is palindromic.

Theorem (Stanley 1978)

A Cohen-Macaulay graded domain R is Gorenstein iff $N_{R}(x)$ is palindromic.

Corollary

If R is a cyclotomic Cohen-Macaulay graded domain then R is Gorenstein.

Complete intersections

Definition

A graded algebra $R \simeq k\left[x_{1}, \ldots, x_{e}\right] / I$ is a complete intersection if I is generated by a regular sequence.

Complete intersections

Definition

A graded algebra $R \simeq k\left[x_{1}, \ldots, x_{e}\right] / I$ is a complete intersection if I is generated by a regular sequence.

If R is a complete intersection, then

$$
H(R, x)=\frac{\left(1-x^{d_{1}}\right) \ldots\left(1-x^{d_{m}}\right)}{\left(1-x^{n_{1}}\right) \ldots\left(1-x^{n_{e}}\right)}
$$

Complete intersections

Definition

A graded algebra $R \simeq k\left[x_{1}, \ldots, x_{e}\right] / I$ is a complete intersection if I is generated by a regular sequence.

If R is a complete intersection, then

$$
H(R, x)=\frac{\left(1-x^{d_{1}}\right) \ldots\left(1-x^{d_{m}}\right)}{\left(1-x^{n_{1}}\right) \ldots\left(1-x^{n_{e}}\right)}=\frac{N_{R}(x)}{D_{R}(x)}
$$

Corollary

If R is a complete intersection, it is cyclotomic.

(Cohen-Macaulay $\left.\begin{array}{c}\text { domains }\end{array}\right)$
 complete intersection

complete intersection
cyclotomic

Gorenstein

Example (Stanley)

$R=k[x, y] /\left(x^{3}, x y, y^{2}\right)$ with $\operatorname{deg}(x)=\operatorname{deg}(y)=1$. We have

$$
H(R, t)=\frac{1-2 t^{2}+t^{4}}{(1-t)^{2}}=(1+t)^{2}
$$

R is cyclotomic, but not a complete intersection.

Koszul algebras

Definition

A graded algebra $R \simeq k\left[x_{1}, \ldots, x_{e}\right] / I$ with $\operatorname{deg}\left(x_{i}\right)=1$ is Koszul if the minimal free resolution of k as an R-module is linear (i.e. $\beta_{i, j}^{R}(k)=0$ whenever $i \neq j$).

Koszul algebras

Definition

A graded algebra $R \simeq k\left[x_{1}, \ldots, x_{e}\right] / I$ with $\operatorname{deg}\left(x_{i}\right)=1$ is Koszul if the minimal free resolution of k as an R-module is linear (i.e. $\beta_{i, j}^{R}(k)=0$ whenever $i \neq j$).
I has a Gröbner
basis of quadrics $\Longrightarrow R$ is Koszul $\Longrightarrow \begin{gathered}I \text { is generated } \\ \text { by quadrics }\end{gathered}$

Koszul algebras

Definition

A graded algebra $R \simeq k\left[x_{1}, \ldots, x_{e}\right] / I$ with $\operatorname{deg}\left(x_{i}\right)=1$ is Koszul if the minimal free resolution of k as an R-module is linear (i.e. $\beta_{i, j}^{R}(k)=0$ whenever $i \neq j$).

Theorem (B., D'Alì 2021)

A Koszul algebra R is cyclotomic iff it is a complete intersection.

Thank you for your attention!

